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SUMMARY

The author has developed a method to find the direct solution of the Dirac equation. To solve
the problem, first we determined the most general form of the successive Lorentz transformations.
Then, we have found their corresponding representation matrix S(A) in the representation space
of the Dirac spinors. The matrix S(A) is used for the purpose of both diagonalizing the Dirac
operators and determining the Dirac spinors that give the solution of the Dirac equation.

The present method also helps study the constitution of Dirac spinors and Dirac operators.
Furthermore, we can make the most of the method to address the topics of matrix algebra such as
the polar decomposition and projection operator.

Key Words:  Dirac equation, Dirac operator, Dirac spinor, Lorentz transformation,
Polar decomposition, Projection operator.

1 Introduction

The Dirac equation has been long investigated as one of the basic equations of quantum
mechanics, especially in the area of quantum field theory.? The Dirac equation is described by

(iv*9, —m)p(x) =0 (1 =0,1,2,3), (1)

where i isthe imaginary unit; m is the mass of an electron; y# are (4, 4) matrices called gamma
matrices;" d, is an abbreviation of d/0x*; x is also an abbreviation of the space-time

coordinates in the Minkowski space. The space-time coordinate of x in Eq. (1) is expressed as

=
M

: )
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where x° denotes the time coordinate; x, x2, and x3 are the space coordinates. The function
P(x) is represented by a (4, 1) matrix (i.e., column vector) and called a Dirac spinor.?) The
representation of gamma matrices depends on how the Pauli matrices are defined. In this article,
we adopt the Wigner’s representation® for them. We list the gamma matrices and the Pauli spin
matrices as follows:

=E %) (Lo ) k=123, G

where each entry represents (2, 2) matrices with E and 0 being the identity matrix and zero
matrix, respectively. Individual Pauli matrices oy (k = 1,2,3) are given by

w=( oh 2= o) u=(3 1) @

The two linearly-independent plane-wave solutions of Y (x) are expressed as
$(x) = u(p, h) ™%, )
x(x) = v(p, h) e'?*, (6)
where h denotes the helicity; p and p are momentum and four-momentum, respectively, with p

defined as p = (7‘;0) with p° (> 0).

Notice that the (4, 1) matrices u(p,h) and v(p, h) behave as a constant with respect to the
space-time coordinate x. In Egs. (5) and (6), ¢(x) and y(x) are referred to as the positive-
energy solution and negative-energy solution, respectively. The energy of a particle (p°) with its
rest mass m is given by

p° = /p? +m2. (7
Substituting Egs. (5) and (6) for Eq. (1), we obtain
(pur* —m)u(p, h) =0, (®)

(=puy* —m)v(p,h) = 0. )

The full matrix representations for Egs. (8) and (9) are given by

28



pO —-m 0 p3 _pl _ lp2
0 p’—m —pl4ip?  —p3
—p3 pl + ip? _};0 _sl (2)9 u(p,h) =0 (10)
p! — ip? p3 0 —p°—m
and
0 —pO —-m 1 _ i 2 3
2 ptip? *;0 PR pem=o (11)
—pl +ip?  —p? 0 p’—m

respectively. In this article, we call the (4, 4) matrices of Egs. (10) and (11) Dirac operators.?
Although the word “Dirac operator” is normally used for differential operator represented in Eq.
(1), we use this word for (4, 4) matrices that are derived from the differential operators. For later
use, we define the (4, 4) matrix operators of Egs. (10) and (11) as

pO —-m 0 p3 _pl _ lp2
| P P+ —p'-m 0o [
pt—ip? P 0 —p°—m
_po —-_m 0 _p3 pl + lpz
~ 0 —p°—m 1_jp2 3
6= 5 g Do P B (13)
p p-—1p p-—m
—-pt+ip?  -p° 0o p’-m

The properties of the Dirac spinors and Dirac operators have fully been explored to date. Yet,
it was less popular to view Egs. (10) and (11) as a standard eigenvalue problem.® This is, however,
not hard to imagine. It is because we immediately see that

6+ 6 =-2mE, (14)
where E is a (4, 4) identity matrix. We can at once obtain eigenvalues 0 and —2m (each number

doubly degenerate) with both & and ®. On top of it, neither ® nor ® is a normal operator (i.c.,
neither Hermitian nor unitary). Hence, it is impossible to diagonalize ® and ® through the
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unitary similarity transformation.®) Thus, these matrices are a little bit difficult to deal with in terms
of matrix algebra. More specifically, it would be intractable to construct the diagonalizing matrix
of the Dirac operators ® and ® by seeking the eigenvectors that belong to their eigenvalues.

Furthermore, spatial rotations and boosts are intricately mingled together so as to constitute
the collective and general Lorentz transformation. In fact, to the best of the author’s knowledge, to
obtain direct solution of the Dirac equation by use of the matrix algebra has yet to be adequately
investigated in a general form except for simple cases.”

In this article, the author wishes to show how the Dirac equation can be solved by directly
transforming the matrices ® and ®. To this end, we determine the representation matrix S(A)
associated with the Lorentz group in the most general form and diagonalize the Dirac operators via

the similarity transformation using S(A). Their implications and significance are also discussed.
2 Transformation of space-time vector and Dirac spinor

Let us express a space-time vector X in the Minkowski space as

X

X = (ey ey e, e3) (i;), (15)

x3

where (eq e; e, e3) are the set of basis vectors of the Minkowski space. In terms of the special
theory of relativity, a vector X is associated with a certain space-time point where a physical
“event” has taken place. That event is observed and compared from the different inertial frames of
reference that are connected to one another via the Lorentz transformations. To explicitly show this,
we rewrite Eq. (15) as

XO x’O
X =(epeseze3)A" - A(i;) = (eg 1 €3 €3) <§2>, (16)

x3 x'3

where A denotes a Lorentz transformation. Defining a shorthand notation in Eq. (16) such that

x0 x'0
1 A1
e = (eO e e 83)3 el = (e(,) e{ eé eé): X = (;2): xl = <§12)> (17)

x3 x'3

we rewrite Eq. (16) as

X=ex=eNl Ax=¢ex. (18)
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The basis set e = eA™' represents the set of basis vectors obtained by the Lorentz
transformation A. The coordinates x' = Ax indicate those obtained by A as well.
Meanwhile, defining D = iy#9, — m, we rewrite Eq. (1) as

DY(x) = 0. (19)

We assume that both the Dirac operator and Dirac spinor undergo some sort of transformation
in connection with the Lorentz transformation.” Operating D(A) from the left on both sides of Eq.
(19) and inserting [D(A)]™! - D(A) between D and (x), we obtain

DMD[DM]™ - DWYP(x) = 0,
where D(A) denotes a transformation operator associated with A. Further defining
D =DWDDMW]™, P(x) = DWP(A™X), (20)
the Dirac equation is expressed in reference to the x’-system as
DYP(x') = 0.
In Eq. (20) ¥(x") denotes the change in the functional form accompanied by the coordinate
transformation.” The whole collection of the Lorentz transformations forms the Lorentz group and,

hence, we assume that D(A) gives a representation pertinent to the Lorentz group. According to
the custom,"” we define S(A) as

S(A) = D(A). 1)
Regarding the plane waves, P (x) is described by
P(x) = e P w(p, h),

where w(p, h) represents either u(p,h) or v(p,h) of Egs. (5) and (6). The quantity px (=
pux*) in etP¥ s a scalar, and so invariant in relation to the Lorentz transformation with p'x’ =
px. Hence, it behaves as a constant in terms of the operation of S(A).

In what follows, we examine how the Dirac equation is transformed by the Lorentz
transformation to find the direct solution of the Dirac equation. We choose two coordinate systems
for the inertial frames of reference. One is a frame where an electron is at rest (the x-system). In

the other frame (x’-system), that electron is moving at a velocity v. In the x-system, we have

P(x) = w(0, h)eFPox’ = w(0, R)e+m*’,
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In the x'-system, in turn, the Dirac spinor is described by
Px") = e S(A)w(0, k) = e ¥ w(p', h) = S(AP(x). (22)
3 Determination of general form of representation matrix S(A)

The plane-wave solutions of the Dirac equations [Egs. (10) and (11)] are specified by
momentum (p) and helicity (h = +1). To decide the direction of the normal to the wave front is
our next task. It is easiest to solve the Dirac equation for an electron at rest. Let the inertial frame
of reference to which the electron is at rest be O with the basis vectors given by e. Let another
inertial frame of reference where the electron is moving at a velocity v be O’ with the basis
vectors of e’ and the coordinate x' (see Figure 1). We assume that the propagation direction of
the wave front parallels the direction of the electron motion. In Figure 1, the electron is moving in
the direction specified by a zenithal angle 6 (0 < 6 < m) and azimuthal angle ¢ (0 < ¢ < 2m).
Then, the transformation from the frame O to O’ is achieved via the following successive
transformations:

(i) A Lorentz boost with —v along the x3-axis,
(ii) a rotation around the x?-axis by —8,
(iii) a rotation around the x'3-axis by —¢.

We adopt the “moving coordinate systems” with the different inertial frames of reference.”
Note that the direction of the Lorentz boost (—v) is opposite to that of the electron motion (V).
Thus, with the total transformation we obtain e’ = eA™! = eA bAglAg,l. Therefore, we have

A1 = ApAGtAG de, A= AyAgA, (23)

Finally, from Eq. (18) we get

x' = Ax = ApAgAy ' x. (24)

Figure 1 Geometry of the electron motion.
The velocity of the electron is given by v

and designated by a zenithal angle 6 and

azimuthal angle ¢. The x'-, x'?- and

13

x'°-axes are the spatial components of the

frame O’.
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Since S(A) is the representation of the group, from Egs. (21) and (23) we have
S(0) = 5(A)S8e)S(AY) = S(Ag)S(AR)ISAp] T, (25)

where Ay, Ag,and A, are expressed as

1 0 O 0 1 0 O 0
A= 0 cos¢p —sing O A= |0 cos6 0 sing
$~\0 sing cos¢p O 710 O 1 0 )
0 0 0 1 0 —sinf8 0 cos@
coshw 0 0 -—sinhw
0 1 0 0
M=o 001 0 ) (26)
—sinhw 0 0 coshw
In Eq. (26), w is said to be rapidity and defined as
tanhw =v (—ro<w<ow e -1<v<l), (27)

where v is a velocity measured in a natural unit of the particle (i.e., electron).

As discussed in the previous section, to examine the constitution of the Dirac equation we wish
to rewrite the Dirac equation and find the solutions with the electron at rest. Then, we construct the
Dirac equation in the general case where the electron is moving as shown in Figure 1.

The properties of S(A) have been fully investigated, and so we borrow their matrix

representations from literature.®) We have

el®/2 o 0 0
—igp/2 0 0
S(hg) =exp@p) =( 0 ¢ 7 g o ) (28)
0 0 0 e
6 . 8
cos; smz 0 0
.6 ) 0 0
S(hg) = exp(8py) =| —sing cos; 0 0 (29)
0 O 2 2
—cin? 9
0 0 sin—  cos>

with p,, given by
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[V, v (k Lm = 1,2,3), (30)

l
4

pm = (—D)J4; JH =

In Eq. (30) y* (k =1,2,3) are the gamma matrices and k,l,and m change cyclic. We have

ki _ 1(%m 0)
] _2<0 O.m:

where oy, is a Pauli spin matrix and 0 denotes a (2, 2) zero matrix. Moreover, we have

cosh% 0 —sinh% 0
-1 0 cosh2 0 sinh 2
b = 3) =
[S(Ap)]™" = exp(wfs3) = " 2 " 2 (31)
—sinh— 0 » Cosh> 0 ©
0 smh; 0 cosh;
with B; givenby B3 = (—i) J°3; J*3 = éy°y3. Consequently, we get
S() = S(Ap)SARIS(A] " =
ei®/2c0s% cosh?  ei9/2sin2cosh?  —ei®/2 cos 2 sinh 2 ei9/2 sin & sinh 2
2 2 2 2 2 2 2 2

_i . 0 w —i 0 w —i . 0 . w —i 0 . w
—e “Mzsmgcosh; e lecos;cosh; e i¢/2 sm;smh; e~ i/2 cos;smh;

P o . w P . 6 . w P 06 w P . 0 w
—el?/2 cos=sinh=  e'®/2sin=sinh = e'?/2cos = cosh = e'?/2sin = cosh =
2 2 2 2 2 2 2 2
—i .0 . w —i 0 . w —i . 0 ) —i 0 )
e"9/2ginZsinh= e ®/2cos=sinh= —e~?/2sin=cosh= e /2 cos=cosh=
2 2 2 2 2 2 2 2
(32)

In the next section, we make the most of Eq. (32) to directly solve the Dirac equations Egs.
(10) and (11) to get their plane-wave solutions.

4 Solutions of the Dirac equation
In the frame O where the electron is at rest, Eqs. (10) and (11) take a particularly simple but

important form. Since we have p = 0, from Eq. (7) we obtain p° = m (> 0), and so Egs. (10)
and (11) are respectively reduced to
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0 0 0 0 0 O 0 0
0 0 0 0 . _({0 O 0 0
0 0 0 —2m 0 O 0 —2m
and
-2m 0 0 O —-2m 0 0 0
0 -2m 0 O . 0 -2m 0 O
0 0 0 olv@Om =0 with B=|, T 0 ol (34)
0 0 0 O 0 0 0 0

The matrices A of Eq. (33) and B of Eq. (34) correspond to the positive-energy or negative-
energy solution, respectively. Note that both A and B have been diagonalized. Consequently, if
the Dirac operator ® of Eq. (12) and ® of Eq. (13) are related to A and B, respectively, this
should lead to the desired solutions of the Dirac equation.

Equations (33) and (34) are immediately solved to give"

1 0
0 1
0 0
0 0
10 1 0
v+ =(] ] vo-D=( | (36)
0 -1

The minus sign of RHS for the second equation of Eq. (36) is due to the charge conjugation.”
Operating S(A) given in Eq. (32) from the left on both sides of Eq. (33) and inserting [S(A)]™* -
S(A) between A and u(O0, h), we obtain

S(MA[S(A)]™ - S(A)u(0,+1) = 0. (37)

Then, we should be able to get the Dirac operator S(A)A[S(A)]~! and the corresponding
Dirac spinor solution S(A)u(0,+1). We have

[S(D)]™! = SR [SA)] L S(Ag)] L =
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—i 0 w i . 6 w i 0 . w i . 0 . w
e ‘¢/2cosEcosh; —eld’/zsmgcosh; e lecos;smh; —e‘d’/zsmgsmh;

_i . 0 w ; 0 w i . 0 . w ; 0 . w
e~ /2sinZcosh—=  e'®/2cos=cosh— —e ®/2ginZsinh= —e®/2 cos—sinh—
2 2 2 2 2 2 2 2

—i 0 . w ; N w —i 0 w ; . 0 w
e~ /2 cosZsinh= —e'?/2sin=sinh— e"9/2cosZcosh= —e'®/2sin=cosh=
2 2 2 2 2 2 2 2

_i . 6 . w ; e . w i . 6 w ; 06 w
—e”®/2ginZsinh= —e®/2 cos=sinh— e"9/2sinZcosh=  e'%/2 cos=cosh—
2 2 2 2 2 2 2 2
(38)

Hence, we obtain

S(MA[S(M)]™! = (—2m) X

— sinh? ’ 0 — cos 6 cosh 5 sinh 5 e'? sin 6 cosh 5 sinh 5
0 —Sinh2 @ i w . w [ w
2 e '?sin @ cosh—sinh— cos 8 cosh—sinh—
w . w ¢ . w . w 2 2 2 2
cos 6 cosh ;smh; —e'? sin 6 cosh 5 smh; cosh? & 0
2 2 w
—i . w . w w . w —
—e~® sin 0 cosh ~sinh>  —cos @ cosh~sinh~ 0 cosh® >
(39)

Now, using the formulae of the hyperbolic functions

1

coshw = NEEETYI (40)
we have
coshw =1/V1—-v2 = y. (41)
Meanwhile, we have”
p'® =my = mcoshw, p' = myv, (42)

the first equation of which represents the equivalence theorem of mass and energy due to Einstein.
Also, using formulae of the hyperbolic functions we have

w 1+coshw O¢+m ., w —1+coshw 0—m
cosh— = = |2 , sinh— = = |2 ,
2 2 2m 2 2 2m

tanh2 =
2 C

}Q = (@ = m)/ @ +m) = 1P/ +m). “3)
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From Egs. (7) and (43), we obtain

. 1 7 7 1 ’
cosh%smh%=%\/(p°+m)(p°—m) =—p'l. (44)

Using the relations Egs. (40)—(44), finally we get

p’-m 0 |p'|cos® —|p'|e'®sind
SMA[SWN] ™ = ,0 p'(" —m  —|p'le"®sinf® —|p'|cosb
—|p'lcos® |p'le®sind  _p0_pm 0
Ip'le"®sin®  |p'|cos@ 0 "% —m
(45)

Converting the polar coordinate into the Cartesian coordinate, we find that Eq. (45) is identical
with ® defined in Eq. (12). That is, we have

S(MA[S(M)]™L = 6. (46)

From Eq. (37), in turn, we obtain

e®/2¢cos g cosh % e®/2¢cos g

— e~ /25in & cosh £ " — e~ iP/2gin =
SWu©, - = ;s ll=dEE L, B @D

—eld/2 cos ~sinh mo| _gei®/2 cos ~

e~i0/2 5in L 5inh © Se~i¢/2gin 8

2 2 2

where we define S as

S=p'l/@"°+m) = tanh-. (48)

Thus, as the full description of the plane-wave solution we get e.g.,
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- )
e‘¢/2cosz

—e~i#/2gin 2
5 N ity _ip'x! |D"0+m e sin
P =e P *S(AN)u(0,-1) = e P* |—— (49)
! 2m | _seit/2 o5 2
2
—ip/2 (2]
Se sin~
Similarly, we have
; .6
e'®/2ginZ cosh = , P
26 2 eld’/zsin;
/20052 @ i 6
e coszcosh2 _ipy [proem| e /2 cos

7 N — —ip’x’ — —ip’x’ —
P, (x)=e SMWu(0,+1) =e =e
2( ’ i L0 . w ib/2 i 0
gl®/2 sm;smh; 2m Sel®/2sin
i ]
e~/ cos sinh £ SeTi¢/2 cosy
2 2

(50)
Also, from Egs. (14), (33), and (34), we readily confirm that
S(A)B[S(M)]™ = 6. (51)
Similarly to Eq. (37), we have
S(MB[S(M)]™* - S(A)v(0,F1) = 0. (52)

Consequently, we obtain

i 6 . w
—e®/2cos=sinh = , .
2 2 —Sei®/2 cos;

i . 0 . w
e"'¢/2sin=sinh = Cio)2 b
{/} (xr) = eip’x’S(A)v(O +1) — eip’x’ 2 2 _ eip,x, p'%+m Se~ i/ sin
3 ) ’ /2 o ot 2m eid/2cos? |’
e CosEcoshE ’
i —e—i#/2 in?
—e~l9/2 Singcoshg e sinZ
2 2
(53)
iP/2 o 6 . w
—e sin—=sinh— ' ,
26 2 ~Seld/? sing
—1 . w
- s .| —e 9/2¢c0s<sinh = v oo | —se=i9/2 cos?
1/) (xf) = elpxs(A)v(O _1) = elPXx 2 2 _ oip'x p ’
' ' /2 5in 2 z 2m —ei®/2 sin?
—e sm;cosh; ’
—ig/2 0 I —_e—ip/2 Cosg
—e Cosgcosh;
(54)
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The above results shown in Egs. (49), (50), (53), and (54) are consistent with those described
in the literature.!” This implies that Eqs. (37) and (52) properly express the Dirac equation in the
representation space related to the frame O’. On the basis of the discussion developed in this
section, we conclude that Egs. (37) and (52) are equivalent to Egs. (10) and (11), respectively.
Hence, we obtain

S(Mu(0,h) =u(p’,h), S(N)v(0,h) =v(p',h). (55)

Multiplying the exponential term e~™* ® on both sides of Eq. (37) or e™x° on both sides of
Eq. (52) and using the notation of Eq. (22), we get a succinct form expressed as

Gp(x) = 0, (56)
where ® represents either ® of Eq. (46) or ® of Eq. (51); ¥(x') is chosen from among

P, (x"), Po(x), Ps(x), and P,u(x") obtained above.
Rewriting Eq. (46), we have

0 0 0 0
- 0 0 0 0
[S(A)] 1BS(A) =A= 0 0 —2m 0 (57)
0 0 0 —2m
Also, rewriting Eq. (51) we have
—-2m 0 0 0
™ 0 -2 0 0
[SWIesW=8={g ~“0 o ol (58)
0 0 0 0

Equations (57) and (58) clearly indicate that & and ® have been diagonalized through the
similarity transformation using S(A) to produce A and B, respectively. Namely, the matrices ®
and ® are semi-simple (or diagonalizable).'" At the same time, the diagonalizing matrix S(A)
yields the desired solutions of the Dirac equation as can be seen in Eq. (55).

In summary, once we can find the proper representation matrix S(A) by calculating Eq. (32),
the Dirac operators can automatically be diagonalized and we are able to determine the
“eigenspinors” of the Dirac equation.

In terms of the group theory, Eq. (46) indicates that the Dirac operators ® and A are
conjugate to each other.'? In turn, Eq. (51) implies that ® and B are conjugate to each other.
Correspondingly, Eq. (55) represents the transformation between the Dirac spinors. Thus, the Dirac
equation of Eq. (56) that describes the plane wave in the frame O’ is connected to Eq. (33) or (34)
that is pertinent to the plane wave in O (i.e., the rest frame) through the medium of the matrix
S(AN).
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In the discussions made thus far, we have dealt with the Dirac equation in the relationship
between the rest frame of the electron (the frame 0) and the moving frame O’. Next, we wish to
generalize the situation by considering the relationship between two moving frames. Suppose that
we have another inertial frame of reference O where the electron is moving at a velocity D with
a zenithal angle @ and azimuthal angle ¢ (see Figure 1).

To address the issue appropriately, we break down the problem again into the relationship
between the rest frame and the moving frame of the electron. In other words, considering the
relationship between O and O as well as that between O and O’, we relate the moving frame O
to the other moving frame O’ through the medium of the rest frame O. Let

=
M
%
.

be the coordinates of the frame O. Defining A as below and following Eq. (24), £ is given by

% = Rx = AghAghj'x,

where A@, Ag, and Ajp can be obtained by replacing ¢, 6, and w of Eq. (26) with gB, 9, and

@, respectively. The rapidity @ is defined as in Eq. (27) from the velocity ¥ of the electron
measured in the frame O (also, see Figure 1). Using Eq. (24), we get

£ =AA\"tx. (59)

Thus, the Lorentz transformation that links the frame O to O’ is described by AA™! through
the mediation of the rest frame O. Meanwhile, using the notation of Eq. (22) we have

P& = SA)PY(x) = ™’ S(R)w(0, k) = e ™’ S(R)[S(A)]~1S(A)w(0, h)

= =M’ S(R)S(A™H)S(M)W(0, h) = eXm*°S(AA1)S(A)w(0, h)

= S(AAY)P(x"), (60)
where with the fourth and fifth equalities we used the fact that S(A) is the representation of the

group; the last equality resulted from Eq. (22). The function {(%) is the Dirac spinor defined in
the moving frame O. Since A and A are the elements of the Lorentz group, so is AA™L.
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In Eq. (60), S (K) is obtained by replacing ¢, 0, and w of Eq. (32) with ¢, 8, and @,
respectively. Thus, the Dirac spinor is transformed according to S (KA"l) in correspondence to
the Lorentz transformation AA™! described in Eq. (59). More importantly, Eq. (60) represents the
transformation of the Dirac spinor between two arbitrarily chosen inertial frames of reference. Note,
at the same time, that Egs. (59) and (60) can be rewritten in a complementary way as x’ = A(A) 1%
and P (x") = S[A(A) "] (R), respectively.

Explicit matrix representations of AA™! of Eq. (59) and S (KA‘l) of Eq. (60) are listed at the
end of the present article (see Appendix). In Appendix, if we put ¢ =0 =w =0, S (KA‘l) is
identical with a matrix obtained by replacing ¢, 8, and w with ¢3, 9, and @, respectively, in
RHS of Eq. (32). If we put ¢ =8 = & = 0, in turn, S(AA™!) is identical to RHS of Eq. (38).

In accordance with Eqgs. (46) and (56), the Dirac equation in the frame O is expressed as

GyP(x) = 0, (61)

where ® is given by either & = S(A)A[S(A)]™* or & = S(A)B[S(A)]™*. Using Eqs. (57) and
(58) along with Eq. (60), Eq. (61) can be rewritten as

S(A)[SW]LBSW[S(A)] L - S(A) S P (x") = S(A) S EP(x") = 0,
(62)

where with the LHS once again we used the fact that S(A) is the representation of the group. Thus,
we find that Eq. (62) is equivalent to Eq. (56).

Equations (56) and (61) clearly indicate that the Dirac equation is transformed between two
arbitrarily chosen inertial frames of reference via S(E) in which E denotes a Lorentz
transformation that links the said two frames. As a special case, one out of the two inertial frames
of reference can be the frame where the electron stays at rest. In that case, S(E) is a diagonalizing
matrix of the Dirac operator. Namely, the Dirac operator can be diagonalized through the similarity
transformation based on S(E).

Meanwhile, we have

® = S(AA"H)B[S(AAL)] (63)

This gives the transformation of the Dirac operator between the moving frames O and O'. If
A is the identity operator, the frame O is identical to the rest frame O and Eq. (63) is reduced to

& = S(A)B[S(A)]! (64)
with & = A or ® = B. Then, Eq. (64) is virtually the same as Eq. (46) or Eq. (51). If A is the

identity operator, in turn, the frame O is identical to the frame O, and so Eq. (63) can be rewritten
as ® = [S(A)]"'GS(A) with ® =4 or ® = B so as to be reduced to Eq. (57) or Eq. (58).
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5 Polar decomposition of the Dirac operators and related matrix algebra

So far, we have examined the transformation properties of the Dirac equation in terms of the
Dirac spinors and Dirac operators. These spinors and operators provide a unique opportunity to
study further important aspects from the point of view of matrix algebra.

One of interesting topics lies in the polar decomposition of a matrix. For this, we have a

following theorem.®

Theorem 19

Let A be a non-singular matrix. Then, there exist positive definite Hermitian matrices H;
and H, as well as a unitary matrix U such that

A=UH, = H,U. (65)

If and only if A is a normal matrix, then we have H; = H,. (Thatis, H; = H, and U are
commutative.)

Equation (65) is said to be a polar decomposition and Theorem 1 implies that the
decomposition of Eq. (65) is unique. Regarding the polar decomposition, we have a good example
with the representation matrix S(A). Using Egs. (28), (29), and (31), we describe S(A) of Eq.
(32) in such a way that

S =
ei¢/2cosg el®/2 sing 0 0 cosh% 0 —sinh% 0
, , 0 0 @ inh &
e ib/25in?  o-id/2 cosf i)2 O i6)2 wiv 6 0 cosh> : sinh 7
2 2 e'®/2¢os e sin R 0 w 0
0 0 ' 2 o . 29 —sinh— % = cosh— ®
0 0 _e_l(p/zsinE e_l¢/2COSE 0 Slnh; 0 COSh;
(66)

Putting S(A) =S (A¢)S (Ag) = S(ApAg), with the polar decomposition of Eq. (66) we
obtain

S() = SAD[SA] (67)

In RHS of Eq. (66), the first matrix S(A,) is unitary and the second matrix [S(A,)]"! is
Hermitian. The eigenvalues of [S(A,)]™? are
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cosh% + sinh% (doubly degenerate), cosh% — sinh% (doubly degenerate)

with a determinant of 1 (> 0). Hence, the Hermitian matrix [S(A,)]™? is indeed positive definite.
Suppose that another decomposition is given by

S(A) = HS(A). (68)
Then, we have
H =SS [SA]" (69)
Since the unitary similarity transformation of an Hermitian matrix retains the Hermiticity and
holds eigenvalues of that matrix unchanged, from Eq. (69) H is positive definite Hermitian as

well. Hence, from the uniqueness of the polar decomposition we find that Eq. (68) is certainly
another polar decomposition. The matrix H is given by

w . w i . . w
cosh 5 0 — cos 0 sinh 5 e'? sin @ sinh 5
0 h @ i w w
7o cosh > e~ sin@sinh= cos@ sinh=
- . w i o . w 2 2
—cosOsinh— e'?sinfsinh— he 0
2 2 COS 2 w
—7 . . w . w —
e~ %sing sinh~  cos@sinh> 0 cosh~

(70)

Notice that we get the representation H as a result of viewing the operator [S(A,)]™! in

reference to the frame O’. The trace of H is 4 cosh %, which is held unchanged after the unitary

similarity transformation with S(A,). Let us think of the following simple example.
Example 1

In the general case of the representation matrix described by Eq. (32) of the previous section,
consider a special case of 8 = 0. In that case, from Eqgs. (32) and (66) we obtain

gi®/2 cosh% 0 —eld/2 sinh% 0
0 g ld/2 cosh% 0 g lo/2 sinh%
—e!®/2 sinh 2 0 e'®/2 cosh = 0

0 2 emi®/24iph2 Z emid/2 cosh 2
2 0 2
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cosh2 0 —sinh 2 0
2 2

eid)/z O O 0

0 e-i¢/2 0 0 cosh% 0 sinh% (71)
= ip/2

0 0 e —?¢/2 —sinh = 0 cosh=

0 0 0 e 13)

. 2 w
sinh— cosh—
2 0 2

The LHS of Eq. (71) is a normal matrix and the two matrices of RHS are commutative as
expected. As in this example, if an axis of the rotation and a direction of the Lorentz boost coincide,
such successive operations of the rotation and boost are commutative and, hence, the relevant
representation matrix S(A) is normal according to Theorem 1.

Because of the presence of the Lorentz boost, S(A) is in general not unitary. As is evident
from Eq. (27), the Lorentz group is non-compact. In such a case, the representation matrix cannot
be made unitary. In this respect, the representation matrix S(A) is a typical illustration.

Another interesting aspect of the Dirac operators lies in the fact that those operators act as
projection operators. In fact, from Eq. (14) we have

® &
T Cm (72)
Defining § and Q as
_ 6 _ 6
P = Ty Q= 2y (73)
we have
P+Q=E. (74)
Also, we obtain
P2 = sBs™' sps~' _ sB?s~' _(-2m)sBS™' _sBsT' & B
T (m2m) (-2m) (-2m)2  (-2m)2  (-2m) (-2m) °
Q2 = SAS™! SAST! _ sA’s™' _ (-2m)sAST' _sAsT'! 6
T (—2m) (-2m)  (-2m)2  (-2m)2  (-2m) (-2m)
sBs™! sAs™!  sBAs!
PR=Tom Cam — cam (75)
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The properties represented by Egs. (74) and (75) reflect the nature of B and Q as projection
operators.'¥ In connection with the Hermitian projection operators, various aspects have fully been
explored in the literature.'® Nonetheless, as neither B nor Q is an Hermitian operator, special
care should be taken.

6 Conclusion

The author has developed a method to find the direct solution of the Dirac equation. The
essential point rests upon the fact that we have determined the representation matrix S(A) in the
most general form in the representation space of the Dirac spinors. The present method helps study
the constitution and the transformation properties of the Dirac spinors and Dirac operators.

Furthermore, we can make the most of the method to address the topics of matrix algebra such
as the polar decomposition. The characteristics of the Dirac operators as the projection operators
are of great importance and interest as well.
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