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1 Reduced Teichmiller space

Let R be a finite compact bordered Riemann surface of genus p with m
boundary components and R be the doubled Riemann surface of R, which
is compact Riemann surface of genus 2p +m — 1. Let ¢ be an anticonformal
mapping (involution) on R such that i oi = identity and RU#(R) = R. The
reduced Teichmiiller space of Ry is

T(Ro) = {(R,9); R is a finite compact bordered Riemann surface which

is mapped by a quasiconformal mapping g from Ry to R}/ ~,

where (Rq, g1) is equivalent to (Ra, go) if there is a conformal mapping h from
R, onto R, such that g5 ' o h o gy is homotopic to the identity mapping.
We know T'(Ry) is a 6p — 6 + 3m dimensional real analytic manifold.
For R; = (R, 9:) € T(Ry), set

T(Ro; R;) = {R; = (Rj, gj) € T(Ry); there is a conformal mapping f; from

R; into a proper subdomain of R; with boundary
such that gj_1 o f; o g; is homotopic to the identity mapping}.

We request that f; is conformal on OR; and f;(OR;) consists of analytic curves
on R;. Hence R; — f;(R;) has a positive measure. All Riemann surfaces by
quasiconformal deformations on R; — f;(R;) cover a neighborhood V' of R;
in T'(Ryp). It is clear V' C T'(Ry; R;), hence T(Ro; R;) is open.
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2 Optimal conformal embedding
For (R;, g;) € T(Ro; R;), set
CE(R;, Rj) = {f; f is a conformal mapping from R; into R] such that

g; ' o f o g; is homotopic to the identity mapping},

where R} denotes the interior of Ry.

Let R be a subdomain of Rj such that the boundary is contained in R
and every component of R — R’ is doubly connected. For a R}, consider the
following curve family:;

Z(Rj, R};) = {7; consists of a family of rectifiable closed Jordan curves

each of which divides the boundary components of a component of

RS — R;- from others and « divides all the components}.

Denote the extremal length of Z(R3, R}) by M(Z(R5, Rj)), i.e.,

1
MZ(R;, R})) = sup,{——;p is a Borel measurable conformal density

A(p)

such that Z.nfveZ(R;?,R;){/ p(z)|dz]} = 1},
gl

where A(p) = [ [, p*(z+iy)dzdy. If (Ry, gr) ~ (R}, g}.), there is a conformal

mapping hy such that g, * o hy o g, is homotopic to the identity mapping.
Note that for f € CE(R;, R;),

MZ (R, f(RD))) = MZ(RF, hj o f o b (RY))).

Put
B(R;, R;) = inf{NZ(R;, f(R}))); | € CE(R;, R;)},

where B(R;, R;) = oo if CE(R,;, R;) is empty. We have

Theorem 1. Suppose B(R;, R;) < oo. There is an fi; € CE(R;, R;)
which satisfies N(Z(Rj, fij(R;))) = B(Ri, R;). The boundary of fi;(R7) con-
sists of trajectories of a quadratic holomorphic differential on R;; hence the
boundary s analytic.

We call f;;(R;) an optimal conformal embedding from R; to R;.



Let H be a harmonic function on R; — f;;(R;) such that H takes value
one on the boundary of f(R;) and vanishes on the boundary of f;;(R;).
(%H )2dz? coincides with a quadratic holomorphic differential which is stated
in the Theorem. The components of R; — f;;(R;) will be all annuli. For a
t (0 <t S 1) set Rjt = f”(RZ) U {Z € Rj - f”(RZ),H(Z) S t}. Then
R € T(Ro; R;) and Rj; , Rj3 = R; are arcwise connected in T'(Ry; R;). For
the other Ry € T(Ro; R;), similarly Ry and Ry are arcwise connected in
T(Ry; R;). For small t, we can choose t' so that Ry C Rj;. Since Ryy and
R;; become arcwise connected, Ry, and R; are arcwise connected in T'(Ry; R;).
It follows that

Proposition 2.

T(Ro; R;) is a 6p—6+3m dimensional real analytic submanifold of T(Ry).

Suppose there exists Ro(# R;) which belongs to 0T (Ro; R;) C T(Ry).
We can take a sequence R,, € T'(Ry; R;) converging to R.,. There are quasi-
conformal mappings h,, from R,, to Ry, such that g ! oh, o g, are homotopic
to the identity mapping and

. hnZ
lim esssupl hnz| = 0.

For an optimal conformal embedding f;,, h,o fi, is a quasiconformal mapping
from R; to R.. A subsequence {hj o fi} may converge to a conformal
mapping he, from RS into Re.. If Ry — hoo(R;) has a positive measure, then
it is shown R., € T(Ro; R;). This is a contradiction. Therefore h.,(OR;)
consists of boundary of R., which may be added slits.

Ishida’s example

Let

G=C—[-1,0]U[1,2]U[3,00],

Go= G [-1,0]U[1,2+d U3 - eocd] (O<e<%).

There is no subdomain G' of G such that G' is conformal to G, and G — G’
has a positive measure.
Suppose that there exists a subdomain G’ satisfying the condition. Let

7Z = {v;~ is a closed Jordan curve in G
which devide [—1,0] and [1,2] U [3, 00|},

Z. = {v;7 is a closed Jordan curve in G,
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which devide [—1,0] and [1,2 4+ €] U [3 — €, 00]},
Z' = {~;~ is a closed Jordan curve in G’
which devide [—1,0] and [1, 2] U [3, c0]}.

Take a harmonic function v on C — [—1, f)] U [1, o0] whose boundary value
takes 1 on [—1,0] and 0 on [1, 00]. We have

MZ) = |ldull® = X(Ze) = MZ").

For an admissible density p(x + iy) = |/u2 + uZ,

inf [ p(x +iy)d(x +iy)| > int / p(x +iy)|d(z + i),
YEZ' Jy vEZ Jy

//G/ plx + iy) dzdy < //Gp(x + iy)2dxdy.
Honee (i, [, ple + ig)ld( + i)
, infrez [, p(z + 1y)|d(z + iy
MZ) 2 [ S p(x +iy)*dzdy
(infrez [, p(z +iy)|d(z +iy)])*
I Jo p(x + iy)*dzdy =A2).

This is a contradiction.

3 Embeddability

Let A be the real Hilbert space of square integrable complex differentials
whose inner product is given by

< w,0 >= Real part of//w/\*(f:éﬁ(w,a),
R

where xo denotes the harmonic conjugate differential of o and & denotes the
complex conjugate of 0. The following subspaces of A will be used

Ap ={X € A: \is a complex harmonic differential},

Ao = {X € A: X is a closed differential which is orthogonal to Ay,
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[y ={\ € Ay : \is areal differential},
For a cycle C' in a Riemann surface, let
Z(C) = {v;~ is a sum of rectifiable oriented curves

which is homologous to C'}.

Denote the extremal length of Z(C') by \(Z(C)). Let o(C) = or(C) be the
period reproducing harmonic differential on R i.e.

/Cw = (w,0(C)) for w € TL(R).

Then we know
Accola’s Theorem

MZ(C)) = (0(C),0(C)) = llo(O)]*.

The following is clear by Theorem 1.
Lemma 3. For every cycle C' in Ry and Ry € T(Ry; R;)

AMZ(ge(C))) < A(Z(9:(C))).
Set
T(Ro; Ri) = {R; € T(Ro); \(Z(g;(C))) < M(Z(gi(C))) for every cycle C}

By Lemma T'(Ry; R;) contains T'(Ry; R;). Can we expect T(Ro; R;) = T(Ro; R;)?
The case of annulus is trivially valid. For the case of once hold torus, de-
pending on Shiba’s results, M. Masumoto gives the following.

Masumoto’s Theorem

T(Ro; Ry) = {(X;,Y;, Z;); F(Xs — X;,Ys =Y, Z; — Z;) <0,

F(XZaK7Zl) < F(X]7S/]7Z]>}’

where
FX,)Y,Z)=X*+Y?*+ 7> - 2XY —2YZ - 27X,



for a canonical homology basis {A, B} of Ry

X = MZ(gr(A))), Yo = MZ(gr(B))), Zr = MZ(gr(A) — gr(B))),

Consider the case of triply connected region Ry(p = 0,m = 3). Let
{B1, B2} be a canonical homology basis of Ry. Set

X = MZ(gr(B1))), Ye = AMZ(9x(B2))), Zr = MZ(gr(B1) + gx(B2))),

We use the same notation C in R; and regard C' = ¢; B1 + ¢2 B> a cycle in R;.
For the period reproducing harmonic differential o(C') = o (C') on R;

lo(O)I* = aillo(BII* + 2q192(0 (Br), o (Ba))|I* + g3l (Be)|*

By
2(0(B1),0(Bs)) = [|o(B1) + a(Ba)||* = lo(B)|* = llo(B2)]?,

we get
0 < [lo(O)I* = llo(g; o g7 (O))I?

=2((Xi = X;)qi + (Zi — Z; — (X = X;) — (Vi = Y))) gz + (Vi — Y})43).
It follows that X; — X; > 0 and

F(XZ—XJ,Y;—Y;,ZZ—Z]><O

.....

.....

Denote
are(R) = (0r(Ak), or(A))R, Ane(R) = (0r(Ak), orR(Be))R = Ber(R),

Bre(R) = (0r(Br), 0r(A)) R, Bre(R) = (0r(Bk),0r(Be))r = Bex(R),
Ak 2pre(R) = (0r(Ak), 0OrR(Bapie)) Ry Boprre(R) = (0r(Baptk), 0r(Ar)) R = Cuppir(R),
Bop it (R) = (0r(Baprk), 0r(Be)) Ry Bopinopre(R) = (0r(Bopit), or(Bapie) ) ry
and matrices

A(R) = (ary(R)), A(R) = (6ue(R)), B(R) = (Bre(R)), B(R) = (Bre(R)).
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C(R) = (Bapsus(R)), C(R) = (Bapsre(R)), D(R) = (Bopinzpre(R)).

et A(R) 'B(R) 'C(R)
S(R) = ( B(R) B(R) 'C(R) ) .
C(R) C(R) D(R)
For a cycle )
C'=> (teds + skBr) + Y soprkBopin,
MNZ(C) = llon(O) = [ oa(C) =xS(R)'
where

X = (tla ceny tp, S1y o5 Spy S2p+15 -0y 82p+m71)7

It follows that S(R) is positive definite.
We have
Proposition 5. If R; € T(Ry; R;), then S(R;)—S(R;) is positive definite.

.....

-----

Let

Up = or(A)+i*0r(Ar), Yprk = 0r(Bi)+i*or(Br), Yapir = 0r(Bapik)+i*or(Bapir)-

We have
R Ok ¢ k=1,..p
/ 1/}k = ﬁk,pj — i(sk,p’g, k= P+ 1, e 2]? ,
A ﬁk,@u k:2p+1,,2p—|—m—1
_ &k,é'f'i(;k,éa k= 1,...,]9
B wk: B]f,_p’£7 k:p+1,,2p ,
‘ Br.e, k=2p+1,..2p+m—1

B @2p+k,€; k= 17 e P
/B Uk =193 Bpte k=p+1,..2p :
e Bropres k=2p+1,..2p+m—1



Period reproducer belongs to *I'y,, and can be symmetrically extended to the
doubled Riemann surface. On the other hand, the element of I'y, can be
anti-symmetrically extended to the doubled Riemann surface. Hence v, is
extended to the doubled Riemann surface and denote it Qﬂk. Then

X 0, k=1,...,p
/ wk: 07 k:p+1772p )
Agpte 26k,2p+€a k= 2p + ]_, ceey 2p +m-—1
R —akj, k‘ = 1,...,p
/ ¢k = _kap,é — Z'(Sk,pj, k= P+ 1, c 2p ,
Apte —Brts E=2p+1,...2p+m—1
Cugp — 0 g, k=1,...p
/B Q/Jk = ﬁ]i_p’f’ k= P+ 1, ...,Qp .
e Br.e, k=2p+1,...2p+m—1

We know {z/?k} is linearly independent over complex number field and they
are a basis of holomorphic differentials on the doubled Riemann surface. It
follows that by Torelli’'s theorem

Proposition 6. IfS(R;) = S(R;), R; and R; are conformally equivalent.

Since Riemann’s period matrix is represented by inner products of some
period reproducing harmonic differentials, we have

Corollary 7.

R; = Ry, in T(Ry) if

MZ(gr(C))) = MZ(9:(C))) for every cycle C in Ry.

For (R, g) € T(Ry), let
I(R) = {R: R is a compact Riemann surface of ginus p in which R is embeded}

and i be the embedding conformal mapping from R into R. For homology
basis {1 0 g(Ax),7 0 g(Bi)} in R, take the Riemann’s Period Matrix T(R).
Let P(R) = {T(R) : R € I(R)}. If R; € T(Ry, R;), then P(R;) C P(R;).
Does the converse valid?



4 Punctured extensions

A curve family {1;}2_, in R is admissible if every 4, is disjoint and not
freely homotopic to the other 7,. Assume that every boundary component
C; is contained in the admissible curve family and let v, = Cj,7 =1, ...,m.
There is a quadratic differential ¢ on R; with closed trajectory such that
closed trajectories freely homotopic to g;(7x) constructs ring domain {Ag}
and their ring domains divide R; disjointedly and almost. Let a; = ax(¢) =
inf{[, ¢|"/?;~ is freely homotopic to g;(yx)}. We can take charts {z;}7, of

a;dz

{A;}5L, such that p; = —(2—j)2 and attach punctured disks {z;;0 < |z;| <

T2,
¢;} to R; and get a punctured Riemann surface R; = R;(y), which we call it
punctured extension by quadratic differential with closed trajectory. The ¢
is regarded a quadratic differential on R; with closed trajectory and let 1A%}
be the punctured disk in R; which consists of the closed trajectories freely
homotopic to g;(7Vk)-

Let m;-(.fii;go), m (Rs;¢) be the reduced moduli for punctured disks
Al {A} — Aj} with respect to some fixed parameter at the puncture and

my = mk(}?i;w) be the module of ring domain A,. We denote PE(R;)
such all punctured extensions of R; and admissible curve family contained
all boundary component. by quadratic differential with closed trajectory.
If R, € T(Ro; R;), by theorem 1, there exists a punctured extension in
PE(R;) N PE(Ry) # 0 and a quadratic differential ¢ with closed trajectory
such that every boundary component of R; and R, is the closed trajectory
and ) )
m(Ri; ) >mj(Re @), j=1,...,m.

Proposition 8. Let R;(¢;) = Ri(pe) € PE(R;) N PE(Ry) under the

same admissible curve family. If

Z aj(@i)Zm;(ézs @e) + Z ak(%)ka(Rz; ©e)

= Z aj(‘ﬂi)2m;<éz‘; ©i) + Z ak(%‘)2mk(ﬁi; ©;)
and
m;‘/(Ri§(Pi) > m}'(ﬁg;w), j=1,..,m,
then v; = p; and Ry € T(Ro; R;).



5 Abelian Teichmailler disk

Let {Ag, Br} be a canonical homology basis of modulo dividing cycles , ',
be a subspace of I';, and *I' be the space of harmonic conjugate differentials
which are orthogonal to every differential of T',. Assume that ', = *['-
and every differential in I', has vanishing A period and is semiexact. Set
A, =T, +ix I‘j and call A, a behavior space. A holomorphic differential
1 is said to have A, -behavior if there exists w € A, and wy € A, such
that ¢ = w + wy outside of a compact set. Let ¢ be a square integrable
holomorphic differential and

AT(6) = {% 1] <1},

which is regarded as a submanifold of Teichmiiller space and called an Abelian
Teichmiiller disk. Let g; be a quasiconformal mapping from R, to R; whose
Bertrami differential is t%.

Let I';(R;) be the orthogonal projection to I',(R;) of the pull back
['.(Ro)ogr*. Then A (Ry)ogy € Au(Ro)+ Aeo(Ro) and there exists uniquely
a holomorphic differential 1)} with A,-behavior such that

/ V! = 6;; (0k is Kroneker’s delta).
gt(4;5)
Set
7ij (¢ :/ ;-
i (t; ) gt(Bj)¢

Theorem 9. (cf. Kra [K])
Let ¢ and ¢' be non zero holomorphic differential with A,-behavior.
Assume that for complex numbers t and s in the open unit disk,

7ii(t; @) = 735(s; ¢") for every i and j.
Then - -
b
P _ &

¢ ¢
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