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Summary

The analytic torsions of the line bundles over the quadrics are computed directly from
the defining spectral zeta functions associated with the Dolbeault complex. The spectral
data needed are calculated using the branching rule for the symmetric pair (SO(n +
2),50(2) x SO(n)) given by the author in [2]. The spectral zeta functions for the analytic
torsions are shown to be of the form treated by the author in [3] and the derivatives at 0
are computed by the method developed there. The result is compared with the well-known
Kai Kohler’s paper [1]. The cancellation of the spectral zeta functions is observed, on the
level of the spectral data.
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1. INTRODUCTION.

The analytic torsion of the Hermitian bundle over a complex Riemannian manifold is
defined using the spectra of the Hodge Laplacians associated with the Dolbeault complex.
The author gave the procedure to compute the spectra for Hermitian symmetric spaces
in [3] and carried out the procedure for the projective spaces, which yields the direct
computation of the analytic torsion of the line bundle. This procedure can be carried out
for the quadrics, since the quadrics are Hermitian symmetric spaces SO(n + 2)/SO(2) x
SO(n).

We notice that SO(n+2)/S0O(2) x SO(n) is of rank 2. This means that the spectral zeta
functions are, in general, defined by a double sum. For example, the spectral zeta function
for the space of smooth functions over the 3-dimensional quadric SO(5)/S0(2) x SO(3)
is given by

Cols) = _{2r S (4k1 + 2k + 3) (k1 + k2 + 1)(2k1 + 1)(2k2 + 1)

b0 (Rt k2)2 + 3(2ky + ko) + ka(ko +1)}°

The analytic torsion is defined by the value of the differential at s = 0 for the weighted
sum of such spectral zeta functions. The value of the differential at s = 0 for the above
spectral zeta function seems hard to compute. But fortunately, in our case, there occurs
a cancellation which yields a Dirichlet sum of usual type, and the analytic torsion is
computable. Out main tool is the branching rule of representation for the pair (SO(n +

2),50(2) x SO(n)) given in [2].
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In fact, the cancellation procedure had been fully explained and carried out in the paper
[1] by Kai Koéhler, for any vector bundles over any Hermitian symmetric space.

In this paper, we shall give the very details that are specific for the case of quadrics,
and obtain the concrete Dirichlet sums of the type treated in [3]. Finally, the analytic
torsions are computed by the formula given in [3].

2. HODGE LAPLACIANS ON THE QUADRICS.

The quadric Q™ is a submanifold of the complex projective space P"*1(C) given by
the quadratic equation:

Q" = { [21: 291+ 1 2p40] € P"T2(C)

n+2

When we write the complex vector z = (21, 22,...,2,42) € C""2 as a sum of two real

vectors X = (x1,Z2,...,Zn42) € R"2 and y = (y1,¥2,...,Yns2) € R*"2 like z = x +
n+2

v/—1y, the condition (z,z) = Z(zi)2 = 0 means that (x,x) = (y,y) and (x,y) = 0.
i=1

Therefore z corresponds to an orthogonal basis x, y of a 2-dimensional subspace of R"*2,

and the class [z] corresponds to an oriented 2-dimensional subspace of R"™2. Thus we

can indentify Q™ with the Grassmann manifold SO(n + 2)/S0(2) x SO(n). We set G =

SO(n+2) and K = SO(2) x SO(n).

The Lie algebra g of G is the space so(n + 2) of skew-symmetric matrices. It has an
invariant inner product B(X,Y) = —ntrace XY (X, Y € so(n + 2)), which is the Killing
form sign-changed. With the Lie algebra £ of K, g has an orthogonal decomposition
g = £ ® m. The restiction of B on m gives the G-invariant Riemannian metric on Q".
cosf) —sinf
sinf  cosf
element R(mw/2) x Id of K. The adjoint action J = Ad(j) on m is the complex structure
that corresponds to the complex structure of Q". We denote by m_ [resp. m ] the anti-
holomorphic [resp. holomorphic| part of the complexification of m. We fix an orthonormal
basis {E,} of m_. The complex conjugate {E,} forms an orthonormal basis of m,, and
satisfies B(E,, Ey/) = daq. We also fix an orthonormal basis {F}} of €.

Let (x, Vi) be an irreducible representation of K, where Vi is a complex vector space
endowed with a K-invariant Hermitian inner product. We shall consider the associated
vector bundle F = G X g Vi on Q™ and the Dolbeault complex:

We denote by R(#) the 2-dimensional rotation matrix and by j the

0— OOO(E) i COO(E(X)TO’lQn) ﬁ) ce g COO(E ®T0’nQn),

We notice that £ ® T%9Q" is also an associated vector bundle for the K-module Vg ®
A?(m_)*, where we consider m_ as a K-module by the adjoint action, and the dual space
(m_)* is isomorphic to my as a K-module.

Since G/K is an Hermitian symmetric space, we can apply Theorem 1 of [2] to the
Hodge Laplacian (0 on O (E @ T%9Q").
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Theorem 1. We have 1 1
D= —5Cs + 5 (X(Ch) + x(R)),

where Cy is the Casimir operator of g given by

Cy = Z(EaEa + EaEa) + ;YVbYVba

a

and x(Ct) and x(R) are defined using the Lie algebra action x of €:
WG = XX (E).  x(B) =3 v(Ba B,
b a

We notice that x(C¢) and x(R) are constants depending only on (x, Vk).

The space of smooth sections C°(EQT"1Q™) decomposes into the sum of irreducible G-
submodules. We denote by Vi (Ag) the irreducible G-module with the highest weight Ag.
The action of Cy on the submodule isomorphic to Vg (Ag) is given by the Freudenthal’s
formula —B(Ag +2d¢, Ag), where ¢ is the half of the sum of the positive roots of g. The
action of C¢ on (x, Vi) is computed by the same formula. When we denote by Ax the
highest weight of (x, Vi), the action of x(C%) is given by —B(Ax + 20k, Ak ), where 0
is the half of the sum of the positive roots of ¢.

For an Hermitian symmetric space G/K, the weights of the K-module m, coincides
with the collection of positive roots of g other than positive roots of £. We denote by AE
[resp. AK] the positive roots of g [resp. £]. We may assume that E, are the eigenvectors
associated with the positive roots o € Af \ Af . Then F, are the eigenvectors associated
with the negative roots —a. We can show that

R:Z[EaaEa] = - Z Haa

G\ AK
a€AF\AT

where H, is the dual vector of the positive root «, from which we can deduce that x(R) =
—B(20G — 20k, Ak). Theorem 1 is rewritten as follows:

Corollary 2. The action of O on the irreducible G-submodule of O (E @ T®Q™) iso-
morphic to Va(Ag) is the multiplication of the constant u(Ag) given by

/L(Ag) = % (B(AG + 25@, Ag> — B(AK + 2(5(;, AK)) .

Thus we get an eigenvalue p(Ag) of O, which coincides with the one given in Lemma
17 of [1]. The multiplicity of the eigenvalue is the product of the multiplicity m(q, Ag) of
the G-module Vg(Ag) in the decomposition C*°(E @ T%1Q") = Y7, m(q, Aa)Va(Aa)
and its dimension dim Vi (Ag).

To compute the analytic torsion A-Tor(E), we make the spectral zeta functions (g 4(s)
for C°(E ® T%*1Q™) and (g(s):

Cpals) =Y _m(q Ag)dimVa(Ag) (u(Aa)) ™",
Ac

Ce(s) =) (~1)1qCrq(s).

q=0
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The analytic continuation of these functions are holomorphic in the neighborhood of s = 0,
and the analytic torsion is defined by A-Tor(E) = (;(0).
Notice that pu(Ag) does not depend on gq. We set

D(s,Ag) = dim Vg (Ag) (u(Ac)) ™",

and then we have

n

Ce(s) =Y (~1)%q)_ m(q,Ac)D(s,Ac)

q=0 Ag
=>. (Z(—l)q q- m(%AG)) D(s, Aq).
Ag q=0

We fix a maximal torus ' C K C G, and denote by W¢ [resp. Wi] the Weyl group of
G [resp. K], which acts on the Lie algebra of T', and on the space of weights of G-modules
[resp. K-modules]. We denote by x¢(Ag) the character of the irreducible G-module with
the highest weight Ag.

The main observation of Kai Kohler [1] is that, by the orthogonality of characters of
K-modules, m(q, Ag) is computed by the integral over T of the product of y&(Ag) and
the conjugate of the character of Vg ® A?m, . Therefore, ZZ:O(_l)q q - m(q,Ag) can
be computed by the integral of the product of yg(Ag) and the conjugate of the virtual
character of the virtual K-module Vx ® >0 ((—1)%¢ - A%m. Moreover, since the set of
the weights of m, is just the set of the positive roots in Ai \ Af , the virtual character
has an explicit representation. Using the Weyl character formula, Kai Kohler [1] proved
the following theorem:

Theorem 3. The spectral zeta function (g(s) is given by

Ce(s)=-2" > > sgn(w)dimVg(w(de + Ax + ka) — 5¢)

G\ AK k=
acAG\AL k=1

x B(ka, ko + 20 + 2A k) ™%,

where the sum is in fact taken over the pair (o, k) such that, for some w € Wq, w(dg +
Ak + ka) — ¢ is the highest weight of an irreducible G-module.

See Lemma 4 and the formula (115) in the section 11 of [1].

This theorem gives an account for the cancellation and the general resemblance of the
spectral zeta function, but, to compute the concrete value of the analytic torsion, we need
some more effort.

We shall give the spectral zeta function directly for the 1-dimensional representation
(Xp, C) of K that is given by x,(R(6) x S) = exp(v/—1p#0) for an integer p. We denote the
corresponding line bundle by LP. For p = —1, L? is the restriction of the tautological line
bundle over P"*1(C) to Q™. We assume p > 0 and devide the cases for n = 2m (m > 2)
and n=2m+1 (m >1).
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3. COMPUTATION FOR SO(2m + 2)/S0(2) x SO(2m).

We take the maximal torus T'= { R(0o, 01, ...,0,) = R(0g) X R(01) X --- X R(0,,) } for
both G and K. We take a basis \g, A1, ..., Ay, for the characters, where A (0 < k < 'm)
satisfies exp(Ar(R(6o,01,...,0m))) = exp(v/—16).

The K-module (x,,C) has the highest weight pA¢. The K-module Vi = (x,,C) ®
A9(m_)* is the irreducible K-module with the highest weight (p +¢)Ao + A1 +-- -+ A, for
0 < g < m, is the sum of the irreducible K-modules with the highest weights (p +m)\g +
A+ A1 £ A\ for ¢ = m, and is the irreducible K-module with the highest weight
(P+q)Xo+ A1+ -+ Aap—q for m < g < 2m, and with the highest weight (p +2m)\, for
q =2m.

An irreducible G-module has the highest weight of the form Ag = hoAg + hi A1 + -+
hm—1Am—1 £ hmAm, where hqg, hy, ..., hy—1, and h,, are integers satisfying hg > hy >
> hpmo1 > hyp >0, Weset Ay = g:o)‘i for 1§q<mandA,in:Am_1i)\m.

The decomposion of C*°(LPRT9Q") into the irreducible G-modules can be determined
by examining in which decomposition of irreducible G-module Vi (Ag) the K-module Vi
appears, which can be carried out by the branching rule given in [2]. We give A for which
Va(Ag) appears in the decomposition of C°°(LP @ T%4Q™), and the multiplicity m(q, Ag)
in the following Table 1:

q Ac m(q, Ag)
0 (2k1 4+ p) Ao + kaAy 1
1 forki=0and kg >1
1 (2k1 + p) Ao + ko Aq 1 forky >1and ky =0
2 fork;>1land ky >1
(2k1 +p+ )Xo + koA + Ag 1
(2k1 + p) Ao + ko Aq 1 forky >1and ks >1
5 (%1 + p+ 1o + kads + A 1 forki=0and ks >0
2 forki>1and ky >0
(2k1 +p+2)Xo + k2 Ay + As 1
(2k1 +p+q—2)Ao + ka1 + Ayq 1 for ki >1and ky >0
1 forki=0and ky >0
(*) (2k1 +p+ ¢ =1)Ao + k281 +Aq 2 fork;i>1and ks >0
(2k1 +p+ @) o + kaA1 + Ay 1
(2k1 +p+m —3)No + kaA1 + Ao |1 forky >1and k2 >0
1 forki=0and ky >0
m—1 | Chtptm=2dotkhitAns o g 51 and by >0
(2k1 +p+m —1)Ao + koA + AL 1
(2k1 +p+m —1)Ao + ka1 + A, 1

Table 1 (Part 1): Highest weight Ag and its multiplicity m(q, Ag)
forn=2m. ((x):2<qg<m-—1.)
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q A m(q, Ac)

(2k1 +p+m—2)Ao + koAy + Appmy |2 for by > 1 and kg >0
1 forki=0and ky >0
mo | @ktptm=Ddotkb ALy kS Tand ks >0
@kt m =DM RA A |y oS ko
(2k1 +p+m — 1) + k2 Ay + A 1 for kg > 1 and ke >0
m+1 | (2ky +p+m— 1D +kaAy + A 1 for k; > 1 and ky >0
S

(2k1 +p+m—+ 1)Ao + koA + Ao 1
(2k1+p+q—2)Xo + koAy + Aoppgy1 | 1 for kg > 1 and ka >0
1 for kg =0and ky >0
(%) (2k1 +p+q—1)Xo + kaA1 + Aoy 9 for ky > 1 and ky > 0

(2k1 +p+ @)Ao + ka1 + Ao g1 1
(2k1 +p+2m — 4) Ao + koAy + A 1 for kg >1and ke >0
2m — 2| (21 +p+ 2m — 3)Xo + ko Ay + Ay ; iorkl:eandk?zo
or k1, > 1and ke >0
(2k1 +p+2m — 2)Ag + ka/Ay 1 for ki =2 0and ky >1
(2k1 +p+2m — 3)Ao + k2 A1 + As 1 for kg >1and k2 >0
1 forki=0and kg >1
2m — 1| (2k1 +p + 2m — 2)A\g + ka2 Ay 1 forky >1and ke =0
2 fork;>1land ks >1
2m (2k1 +p+2m — 2) X + kol\q 1 for kg >1and k2 >0

Table 1 (Part 2): Highest weight A and its multiplicity m(q, Ag)
form=2m. ((xx):m+1<qg<2m-—2.)

To see what happens for each Vi (Ag), we rearrange Table 1 to the next Table 2.

Ag (=1)%q m(q, Ac)
0 1
1 forki=0and kg >1
(2k1 + p)Xo + kaAy -1 1 for ky >1and ka =0
2 fork;>1land ky >1
2 1 forki>1and ks >1

Table 2 (Part 1): The multiplicity m(q, Ag) for n = 2m.
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Ag (-1)?q m(q, Ac)

(1) (qg-1) |1
1 forkleandeZO
(2]{?1 +p+q—1)>\o+k2A1—|—Aq (—1)qq 9 fork; >1and ky > 0
2<q¢g<m-—1) (=1)4*t(g+1) |1 forky>1and ks >0

(=nmt(m—-1) |1
1 fork:lz()andk:gzo

_ + _1\m

(2k1+p+m 1))\0+k2A1+Am ( 1) m 9 forklzlandk;gZO
(=)™t (m+1) |1 for k; >1and ky >0

(1) (g-1) |1
(2k1+p+q—1))\0+k2A1 1) 1 forki=0and ks >0
+Aom—q (=1)%q 2 forky>1and ks >0
(m+1<qg<2m-—2) (-1 (g+1) |1 forky>1and ks >0
2m — 2 1 for ki >0and kg >1
1 for ky =0and ke >0
(2k‘1 -I—p+2m—2))\0+k:2A1 —(2m—1) 2 for kl Z 1 and k‘g ZO
2m 1 forkiy>1and ke >0

Table 2 (Part 2): The multiplicity m(q, Ag) for n = 2m.

Taking account of the cancellation of terms, we get the following:

Proposition 4. The spectral zeta function (e (s) is given by

Cre (s
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We notice that the sum of the first term and the last term reduce to the finite sum.

o0

—ZD (2k + p)Xo) +ZD (2k + p +2m) o)
k=0
m—1
D 2k+p )\0)
k=1

Proposition 4 agrees with the result given by Theorem 3.
The value of u(Ag) is given by

nhe) = 5 (B(Ag + 206, Ac) + xp(Ce) + xp(R))

N~ N

(B(AG + 25G7 AG) - B(p>\0 + 25va>\0>) )

which can be computed using

m—1

i=0
Proposition 5. u(Ag) are given as follows:

1
p((2k +p)do) = 5—k(k +p +m),
1
M((p+q - 1)>\0 + kAq ‘|‘Aq) = m(k?‘f’Q)(k +p+2m)
(1<g<m-—1),

1
—(k+m)(k +p+2m),

1
p((p+q—1DXo+ kA1 4+ Aop—yg) = R(k +q)(k+p+2m)

u((p +m — 1))\0 + l{?Al + Ai:l)

(m+1<qg<2m-—1).

The value of dim Vg (Ag) is given by the Weyl dimension formula:

H B(AG + 5@,&)

dim VG (Ag) = B(&G a) 5

G
a€A+

where the product is taken over all the positive roots o = X\;+A; (0 <i < j <m), \; —

(0<i<j<m).
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Proposition 6. dim Vg (Ag) are given as follows:

dim Vg ((2k + p)Ao)
4k +2p+2m (2k+p+2m —1
N 2m 2m — 1 ’

dimVg(p+q — )Xo + kA1 + Ay)
_2(p+q)g(2m—1 2k+p+qg+2m)-(E+p+qg+m)(k+m)

B m ( q ) (k+p+2m)(k+q) - (k+p+29)(k+2m—q)
X<k+p+q—l—2m—1)(k+2m—1

2m —1 2m —1
dim Ve ((p+m — D)o + kA + AD)

B 2m — 1 (2k +p+3m)
—(p+m)< m ) X (k+p+2m)(k+m)

y <k+p+3m—1)(l~c+2m—1)
2m — 1 2m—1 )’
dim Ve ((p+q— Do+ kA1 + Aop—y)
_2(p+q)q(2m—1) 2k+p+qg+2m)-(k+p+qg+m)(k+m)
(

m q k+p+2m)(k+q) (k+p+2¢)(k+2m—q)

y k+p+q+2m—1\[/k+2m—1
2m —1 2m — 1

) (I<g<m-—1),

) (m+1<g<2m-—1).

We notice that all the dim Vg(A¢g) are polynomials in k.
Thus we get the following explicit formula:

Theorem 7. The spectral zeta function (e (s) is given by

m—1 —s
4k +2p+2m 2k +p+2m — 1 1
oy - 5 B ) ()

2m 2m — 1
k=1

N szl 2(p + Q)q (2m — 1)

q

oo

XZ 2k+p+qg+2m)-(k+p+qg+m)(k+m)
(k+p+2m)(k+q) (k+p+2q)(k+2m—q)

o k+p+qg+2m—1 k+2m—1
2m — 1 2m — 1

=0

X {ﬁ(kﬁLQ)(/ﬂ +p—|—2m)}_s.

Since the Dirichlet sums appearing in the above formula are of the type treated in [3],
the analytic torsion A-Tor(LP) can be computed by Theorems 6 and 8 of [3].
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4. COMPUTATION FOR SO(2m + 3)/S0(2) x SO(2m + 1).

We take the maximal torus T' = { R(0y, 01, ...,0,,) = R(0p) x R(01) %+ - -xR(0,,)x1} for
both G and K. We take a basis \g, A1, ..., Ay, for the characters, where A\ (0 < k < 'm)
satisfies exp(Ar(R(6o,01,...,0m))) = exp(v/—16).

The K-module (x,,C) has the highest weight pA¢. The K-module Vi = (x,,C) ®
A9(m_)* is the irreducible K-module with the highest weight (p +¢)Ao + A1 +-- -+ A, for
0 < ¢ < m, with the highest weight (p+ q)A\o + A1 + -+ + Aap—q for m+1 < ¢ < 2m, and
with the highest weight (p 4+ 2m)\o for ¢ = 2m.

An irreducible G-module has the highest weight of the form Ag = hoAg + hi A1 + -+ -+
hmAm, where hqg, hy, ..., and h,, are integers satisfying hog > hy > -+ > h,, > 0. We set
Ag=Y1 Niforl<qg<m.

We give Ag for which Vi (Ag) appears in the decomposition of C*°(LP @ T%9Q"™), and
the multiplicity m(q, Ag) in the following Table 3 and Table 4:

q Ag m(q, Ac)
0 (2k1 +p) Ao + kaAy

for ki1 =0 and ko > 1
for k1, > 1 and ks =0
for k1 > 1and ks >1

1 (2k1 + p) Ao + koly

(2]@1 +p+ 1))\0 + k’zAl + A2
(2k1 + p)Ao + k2 /Ay

for k1 > 1 and ko > 1

fOI‘k/‘l:OaIldk‘QZO
for ki >1and ko >0

2 (2k1 +p+ 1))\0 + kQAl + A2

(2k1 +p+ 2))\0 + kgAl + Ag
(2k1 +p+q—2)Ao + kaA1 + Ay

for k1, > 1 and ky >0

for ki =0and ko >0
for ki > 1 and ky >0

(*) (2]{51 -|-p -|- q — 1))\0 + k?QAl + Aq

(2k'1 +p+ C]))\o + koAq + Aq+1
(21{?1 —|—p —|— m — 2))\0 —|— kgAl + Am,1

for ki, > 1 and ky >0

for ki1 =0 and ky >0
for k1 >1and ky >0

m (2]€1 —|—p—|—m—1))\0—|—k2A1 +Am

(2k1 +p+m)o + ka1 + Ay
(2]€1 —l—p—i— m — 1))\0 + ]{72A1 —|—Am

for ki >1and ko >0

for ki1 =0 and ky >0
for k1 > 1and ks >0

e T e e B O N R e B e B e R S I S S S B NG e B e B B R e Y

(21{?1 —|—p—|— m + 1))\0 —|— kgAl —|— Am_1

Table 3 (Part 1): Highest weight A¢ and its multiplicity m(q, Ag)
forn=2m+1. ((%):2<qg<m.)
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q Ac m(q, Ag)
(2k1 +p+q—2)Xo + ka1 + Aoy gy 1 forki>1and ks >0
1 for ki =0and ky >0
(%) (2k1 +p+q—1)Ao + k2Ar + Aom—g11 2 fork;>1and ky >0
(2k1 +p+ @)Xo + koA + Aoy 1
(2k1 +p+2m — 3)No + ka2 Ay 1 for ky > 1and ky > 1
9m — 1| (2ky + p+ 2m — 2)Ao + kaAy + As ; iorkl:gandkzzo
or ki >1and ky >0
(2k1 +p+2m — 1)X\g + koAy + A3 1
(2k1 +p +2m — 2) Ao + koAy + Ay 1 for ki > 1and k >0
1 forki=0and ky >1
2m (2k1 +p+2m — 1)Ao + koA 1 forky >1and ke =0
2 fork;>1land ks >1
2m+ 1| (2k1 +p+2m — 1)\ + ko Ay 1 for ki >1and ks >0

Table 3 (Part 2): Highest weight Ag and its multiplicity m(q, Ag)

for n =2m + 1.

((kx)m+1<g<2m—1.)

Ag (—1)7q m(q, Ac)
0 1
1 for ky =0and ko > 1
(2k1 4+ p) Ao + k2 Ay -1 1 forky >1and ky =0
2 fork;>1land ky >1
2 1 for ki >1and ke >1
(D (g-1 |1
(21 +p +q — Do+ kahy + A [ (=1)7¢ ; ior i =0and ke 20
or ky > 1 and ke >0
(2<qg<m) (-1 (g+1)| 1 forky >1and ky >0
(D (g-1 |1
(2k1 +p+q—1)Ao + k2Ay 1 for ky =0and ko >0
+Aom—gt1 (=1)%q 2 forky >1and ky >0
(m+1<¢g<2m-—1) (-1 (g+1)| 1 forky >1and ky >0

Table 4 (Part 1): The multiplicity m(q, Ag) for n = 2m + 1.
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Ag (—D)%q  |m(q,Aa)
—(2m—1)|1 forky >0and ky > 1
1 forklz()andkgzl
(2k1 +p+2m — )Xo + koA | 2m 1 forky >1and ky =0
2 forky>1and ky >1
—2m+1)| 1 forky >1and ky >0

Table 4 (Part 2): The multiplicity m(q, Ag) for n = 2m + 1.

Taking account of the cancellation of terms, we get the following, which agrees with
Theorem 3.

Proposition 8. The spectral zeta function (r»(s) is given by

Cov(s Z L2k +p)Ao) = > D(s, (2k + p+ 2m + 1))
k=1 k=0
+) (=19 D(s,(p+q— 1o + kAy + Ay)
q:l k=0

Z )Y " D(s, (p+q— 1)Ao + kA1 + Aomgi1).
qg=m+1 k=0

We compute the value of p(Ag) using

" 1 1

§G:Z(m—z+§> )\i7 B()\“)\j):mém

1=0

Proposition 9. u(Ag) are given as follows:

1
w((p+2k)Xo) = mzk(% +2p+2m + 1),
1
w((p+q—1) o+ kAL + Ag) = m(k+q)(l<:+p+2m+1)
(1<q<m),
w((p+q—DAo + kAL + Aoy y) = m(k +q)(k+p+2m+1)

(m+1<qg<2m).

In this case, the positive roots are A\; + A; (0 <i<j<m), i —\; (0<i<yj<m),
and A; (0 <i<m).
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Proposition 10. dim Vi (Ag) are given as follows:

dim Vg ((2k + p) o)
Ak +2p+2m+1 (2k+p+2m
- o2m + 1 2m ’

dimVg(p+q—1)Ao + kA1 + Ay)
B 4(p+q)q(2m> y (2k+p+q+2m—|—1)-(k:—f—p-l—q—i—m—f—%) (k‘—i—m—i—%)
 2m+1 \ ¢ (k+p+2m+1)(k+q) - (k+p+2q)(k+2m+1—gq)

y k+p+q+2m)\ (k+2m
2m 2m

) (1<qg<m),

dimVG((p+q— 1))\0+kA1+A2m+1,q)

4(p+q)q<2m> y 2k+p+qg+2m+1)-(k+p+g+m+3) (k+m+1)
2m+1 \ ¢ (k+p+2m+1)(k+q) - (k+p+2¢)(k+2m+1—gq)

" k+p+qg+2m)\ (k+2m
2m 2m

) (m+1<q<2m).

We again notice that all the dim Vg(A¢g) are polynomials in k.
Thus we get the following:

Theorem 11. The spectral zeta function (r»(s) is given by
m—1
B 4k +2p+2m+1 2k +p+2m
Crls) == >, =5 = < 2m

k=1

1 —S
— 2k(2k+ 2 2 1
X{4(2m+1) (2k + 2p + 2m + )}

P 2m +1 2m

X {m(k +2m)(k +2p +4m + 1)}_
il 4 2m
Syt on

oo

Z(2k+p+q+2m+1)-(k+p+q+m+%) (k+m+1)
(k+p+2m+1)(k+q) - (k+p+2q)(k+2m+1—q)

" k+p+q+2m)\ (k+2m
2m 2m

(k:+Q)(/€—|~p+2m—|—1)}_s.

k=0

Az

Since the Dirichlet sums appearing in the above formula are of the type treated in [3]
too, the analytic torsion A-Tor(LP) can again be computed by Theorems 6 and 8 of [3].
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5. EXAMPLES.

In §3, we omitted the case n = 2. The quadric Q? = SO(4)/SO(2) x SO(2) is isomorphic
to P1(C) x P!(C). The computation is mostly the same, and we get

Crr(s) =—2(p+1) kZ:OZk+p+3 {%(k+1)(k:+p+2)}—

oo

——ta )3 (ko ) e 02

k=0

In general, for 0 < §; < 9, we set

51 + 6 s 00

0L =
+ 2 2

and, for a polynomial P (k) which is odd with respect to k = —d, we define the Dirichlet
sum ((P(k), 01,025 s) by

((P(k),01,02;8) = Y P(k){(k+61)(k+52)} "
k=0

For 61 =1, 92 =p+2, and P(k) =k + 4, we have
Cre(s) = —4-4° - (p+1)¢(k+d4,01,02; ),
and therefore we can compute as follows:
(L (0) = —4log4 - (p+ 1) C(k + 65,01, 02;0) — 4(p + 1) {'(k + 6, 01,623 0).
By the results of [3], we have

§_)2 p+1 1
Ck +8y.00,00) = (~1,0,) + O 2L L

1

(k4 04,01,02,0) = > _(0)'7P(¢'(=p,61) — (=1)P¢' (—p, 82)) — (9-)

p=0
p+1 p+1 p+1
¢(— +Zk0gk 0_ Zogk ( 5 ) ,

where ((s,a) is the Hurwicz zeta function defined by

oo

1
g(sva) = ];) ma

and ((s) = ((s,1) is the Riemann zeta function.
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Theorem 12. For the line bundle LP on the quadric Q?, the analytic torsion A-Tor(LP)
18 given by

A-Tor(L?) = —8(p+1)¢'(—1) +logd - (p+ 1) ((p +1)+ 1)

3
p+1

—4(p+1)> klogk+2(p+1)*log((p+ 1)) + (p+ 1)°.
k=1

For the case n = 3, we have from Theorem 11

(o (5) :_(1?2))3 <C<<k+ 2p;7)3,2,2p+5;3>
_}l<<k+2p;7,2,2p+5;s>>
_ At g (g((k+w>3,1,p+3;8>
3 2
—WC(WJ%{LH&S))

Ap+2 5)°
+ (p; ) g (g( k:+1%) ,2,p+3;s>

2)2
—%g@ﬂ%&”,z,pw;s)).

Using the results of [3], we have

(k847 61,82:0) = C(=3,8,) + 7(5)*

¢ ((k+04)%,01,02:0) =Y (3> (62 (C (=p, 61) — (—1)PC'(=p,82)) — 2(6_)1.

p=0 P 3

Theorem 13. For the line bundle LP on the quadric Q3, the analytic torsion A-Tor(LP)
18 given by

A-Tor(LP)

=2¢'(—3) — (6p* + 18p 4 13) ¢'(—1)
2p+4 2p+4

; 2 + 3 , ) 13 24
—§Zklogk+ 5 > Klogk — (p +3p+ > klogk
k=2 k=2 k=2

1 2p+4
Sp+1 2)(2p + 3 log i
+ 5+ D +2)(2p+ );;2 og

(continues)
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4p+2 13 p+2
+ §Zk310gk — (2p2 + 6p + 3) > klogk
k=2

k=2
1 p+2
+ 2P+ 1D)p+2)(2p+3)) logk
3 k=2

17 4 17 5 56 5, 71 295
paliewny e nlieey A s i piwy e plnrart

36 6 9 12 144
14 10 54 15 511
= — — —— | log 12
+—(2p + 3p + 2p+—90> og
5 o 7 653
— | = = — | log6.
(6p TPt 180> ©8
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