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Abstract

This paper is concerned with a synthesis of multivariable proportional-integral-
derivative (PID) controllers for a class of nonlinear systems. First, mathematical
model of plant with sector-bounded nonlinearity and multivariable PID controller is
given. Secondly, the closed-loop system is described by a descriptor form. A suffi-
cient condition for checking the Ly-performance of descriptor systems with sector-
bounded nonlinearity is introduced. Based on the condition, the problem of synthe-
sizing multivariable PID controllers is formulated as a bilinear matrix inequality one.
The problem is solved by an iterative linear matrix inequality algorithm to synthesize
a PID controller so as to expand the region of sector and minimize Lo-gain. Finally,
the synthesis method is applied to the synthesis of a PID controller for a ball-on-
wheel system to verify the effectiveness.

Key Words: multivariable PID controller; sector-bounded nonlinearity,; descriptor
system; matrix inequality; Lo-performacne.
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1. Introduction

It goes without saying that most of dynamical behavior of industrial apparatus is de-
scribed by nonlinear mathematical models. Over the past few decades, the concept of
sector-bounded nonlinearity has been used in order to analize and synthesize a class of
nonlinear systems”. In recent years, methods of analyzing and synthesizing the systems
with sector-bounded nonlinearity via linear matrix inequality (LMI) have been vigorously
studied, and applied to various nonlinear systems such as systems with input saturation®.
The convex optimization problem subject to LMIs can be solved efficiently by the interior-
point method”.

The proportional-integral-derivative (PID) control scheme has been widely used in
various industrial control systems, and most of conventional PID controller synthesis
methods are based on the relatively simple representation of plant dynamics such as the
characterization by a single-input/single-output model. These are, however, not necessar-
ily sufficient for plants with multi-input/multi-output.

Recently, multivariable PID controller design method in time domain®>>*>” and a pre-
assigned structure-constrained PID controller design method® in frequency domain have
been proposed. However, these methods have dealt with only design for linear plant.

In this paper, a method of synthesizing multivariable PID controllers for systems with
sector-bounded nonlinearity so as to minimize the L,-gain and expand the region of sector
is presented. Then, this paper extends the analysis condition proposed by F. Wu and B.
Lu”.

The paper is organized as follows. In Section 2, mathematical model of nonlinear plant
with multivariable PID controller is given. The analysis condition is obtained in order to
synthesize multivariable PID controllers for systems with sector-bounded nonlinearity in
Section 3. Section 4 is devoted to the formulation of our problem as an optimization
one, which is subject to a bilinear matrix inequality (BMI). In Section 5, multivariable

PID controller is first obtained for a linearized plant, and then, the controller for nonlinear
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system is determined so as to expand the region of the sector and minimize the L,-gain by
an iterative LMI algorithm. In Section 6, the synthesis method is utilized for synthesizing
a PID controller for a ball-on-wheel system to illustrate the effectiveness.

The principal symbols used in this paper are listed below:

R"™ : setof all real n-vectors
R™™ . set of all real m x n-matrices
I, : n X n-identity matrix
AT . transpose of a vector or matrix A

A>(>)0 : Aispositive (semi-)definite
A> (>)B : A— Bispositive (semi-)definite
diag (a1,...,a,) : diagonal matrix whose elements are a1, . .., a,

tr(A) : trace of matrix A

|Alle : Heo norm of matrix A defined by || Al := SUp omax(A(jw))

weR

1/2

llz]lz, : L2 norm of vector z(t) defined by {/ 2(1) T 2(1) dt}
0

2. Problem Statement

Consider a time-invariant nonlinear plant described by

(iplt) = Ayry(t) + Bput(t) + By (1) + Byu()
8() = Copity (1

y(t) = Cyzy(t)

(- 2(t) = Copap(t) + Dayu(t) + Doyw(t),

)

and
u(t) = ¥(o(t)), (2)

where z,(t) € R™, u(t) € RY, y(t) € R" and 2(t) € R™ ({,r < n) are the plant state,

control input, measured output and controlled output, respectively. w(t) € R is the
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exogenous disturbance such that ||w||, < 0o, and A, By, Bpy, Bpw, Cups Cys Cipy D
and D,,, are constant matrices of appropriate dimensions. The matrices B,, and C, are
assumed to be of full column rank and full row rank, respectively, i.e., rank B,,, = ¢ and
rank Cy, = r.

The vector-valued function ) : R” — R? is a nonlinear function which is assumed to
belong to

A={p:v=19(@), (v—HD) W — Hyv) <0}, 3)

where v € RP, H, = diag (h11, hia, - .., hip), Ho = diag (hay, hea, ..., hop), and W =
diag (Wi, Wa, ..., W,) > 0.

The relation between the nonlinear function ¢ and the sector { (7, v) : (v—H,0)" W (v—
Hy0) < 0} for given Hy, Hy and W is shown in Fig. 1. Throughout this paper, the slope

matrix H; is fixed for simplicity.

Ui A

v; = h1;0;

Y

0 N
v; = hoi;

N
N

v; = i (0;)

Sector

Fig. 1. Relation between nonlinear function and sector.

The control input u(t) is generated by the following multivariable PID controller :

ult) = Kpy(t) + Ky | (P + Koi(h), @

where K p, K; and K are the PID controller gain matrices of appropriate dimensions.
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In this paper, we develop a method of synthesizing PID controller (4) so as to minimize
v and tr (Hs), where ~ is an index in the performance condition ||z|/, < 7| w||L,, and

the minimization of tr (H») stands for the enlargement of the sector.

3. Analysis of a Class of Descriptor Systems with Sector-bounded
Nonlinearities

In order to synthesize PID controller (4) for systems with sector-bounded nonlinearity
in A, we introduce the following proposition obtained by extending the result by F. Wu
and B. Lu”.
Proposition: Assume that a scalar v > 0, diagonal matrices H; and H, and coeffi-
cient matrices F, A, B,, B, C,, C, and D,, in the system
Ei(t) = Az(t) + Byv(t) + Byw(t)
0(t) = Coa(t) (&)
2(t) = CLx(t) + Dyw(t),

are given. If there exist a nonsingular matrix X ., and positive-definite diagonal matrix

W > 0 such that

E'"X,=XLE >0 (6)

ATX o+ XLA + HW; Hy)
BZXCE + W(Hl + HQ)CU

BT X,
C.
XLB,+CIH, + H)W X.1B, CT
—2W 0 0
0 1 opro | <Y @
0 Dw _[m

where H(W; Hy) = —CTH,W H,C, — CI H,W H,C,, then, for all ¢» € A, the system

(5) with v = ¢ () satisfies ||z||z, < 7v||w]||L, provided that Ex(0) = 0.
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Proof: By the Schur complement formula”, we see that (7) is equivalent to

ATX o+ XLA+ HW; Hy) XLB,+ CI'(Hy + Hy)W

B Xo+ W(H, + Hy)C, —2W
B X, 0
XLB, cr
0 +| 0 |[C. 0 D,]<0. (8)
_’YQIS DZ:

Multiplying (8) by [z” v w’] on the left and by its transpose on the right and using (6),

we have

d
E(:cTETde) —2(v — Hi0)"W (v — Hyp) — v*wTw + 272 <0. )

For all v € A, (9) implies

d
E(ZETETXCZLT) —yww+ 272 <0, (10)

Integrating both sides of (10) from ¢ = 0 to ¢ = ¢, we have

/Ot (1) z(T)dr — ~* /Ot w? (T)w(r)dr

< — 2t () ET X a(t) + 27(0) ET X 02(0).

(11)

If E2(0) = 0, then from (11) we have

/Ot (1) z(T)dr < ~? /Ot w’ (T)w(r)dr,

and therefore ||z||;, < v||w||.,- (Q.E.D.)

4. Problem Formulation via Matrix Inequality

In this section, applying Proposition , we formulate our synthesis problem by matrix
inequality.
Consider a controller with g-dimensional vector process z.(t) € R? :

{ te(t) = Kay(t), x.(0) =0

(12)
u(t) = Kiy(t) + Koz (t) + Ksy(t),
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where K, € R?" is a preassigned constant matrix which is chosen appropriately ac-
cording to the structure of the PID controller to be synthesized. Setting Kp = Kj,
K; = KyK4 and Kp = K3 yields the PID controller gains in (4). Furthermore, in-

troducing a vector z(t) defined by
OB EAUIEACREAONRS (13)

we describe the system which consists of (1) and (12) in the descriptor form:
Ei(t) = Az(t) + Byv(t) + Byw(t)
0(t) = Cyx(t) (14)
z(t) = C,z(t) + Dyw(t),

where

I, 0 0
E = 0 Iq 0 N AI: A1+Bchl
0 0 0

0 0 I 0
A1 == K4Cy 0 0 y Bl == O
A, 0 —I, By
C, 0 0
K:==[K K, Ks], C;:=| 0 I, 0
0 0 C,
0 0
By:=| 0 |, By:=| 0
By By

CU::[C'vp 0 O}, C,:=As+ B K,
A, ::[Czp 0 O], By :=D.,, D, :=D.,,.

Proposition proves that if there exist a nonsingular matrix X, a positive-definite

diagonal matrix ¥/, a diagonal matrix H, (0 < Hy < H; < [,), amatrix & and a positive
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scalar v satisfying
E'Xy=XLE>0 (15)

(I)(Xcg, W, ~v; K, Hg)
¢11(XO€7W;K7H2) (1’12(Xd,W§H2)

| O (Xe, Wi Hy) —2W
- O5(Xer) 0
o1, (K) 0
D13(Xer) Pra(K)
0 0
_2 p, | <O (16)
DT — I,

where

D11 (Xeo, W K, Hy) = (Ay + BiKCy)" Xoo + X[ (A1 + BIKCy) — H(W; Hy)
D15(Xeo, W; Ho) = X, B, + C (Hy + Ho)W
D13(Xer) = X[ Bu
Py (K) = (Ay + BoKCy)T,
then there exists a controller (12) (or (4)) which achieves the specification that the closed-
loop system satisfies the condition ||z||1, < 7|w||r, for Ex(0) = 0.

Thus, our problem of determining the controller gain matrix K is formulated as fol-

lows:

find K, X, W, Hy and y so as to
minimize v and tr(H>)

subject to (15) and (16).

This is a BMI problem, and it is difficult to convert it into a sort of convex optimization

problems such as LMI problem.
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5. Synthesis of PID Controller

In this section, noting that fixing either {X.,, W} or { K, Hy} in (16) yields LMI in
the other pair of matrices, we propose an iterative LMI algorithm to solve our problem.
The algorithm does not have a proof for global convergence.

In order to solve the problem of finding X.,, W and ~ so as to minimize  subject to
(15) and (16) with fixed K and H,, we need to calculate K and H, in advance.

First, we obtain K by solving the problem of synthesizing a PID controller for a
linearized plant, where the linearized plant is obtained by the approximation ¢ (v) = ©
(or Hy = Hy = I,). Then, the resultant linearized closed-loop system is described as
follows:

{ Ei(t) = (A + BIKCy)z(t) + Byw(t) -
z(t) = (Ag + BoKCY)x(t) + Dyw(t),
where A; = A, + A, and A, = B,C,.

The controller gain K in the linearized system (17) is denoted by K in the sequel.

Given a matrix K, and a positive scalar 7, the system (17) is admissible and || 7., ||co < ¥

holds, where T’,,,(s) is the transfer function matrix from w to z, if and only if there exists

a nonsingular matrix Y such that

ETYy =YTE >0 (18)

oY, 7" Ky)
(A} + BiK,C)TY + YT(A, + B K,C)
= BTY
Ay + ByK,C,
(BLY)" (As + ByK,Ch)"
—321, DT <0 (19)
D, I,

hold'.
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Consequently, the problem of synthesizing PID controller under /., criterion, i.e.,
| Towllco < 7 is formulated as that of finding matrices Y, K, and a positive scalar
satisfying the conditions (18) and (19). Note that (19) is BMI in Y and K.

Noting that fixing either Y or K, in (19) yields the LMI condition in the other matrix,
we minimize 72 locally by the iterative LMI algorithm for Y and K,. Here, since the
algorithm requires an initial value of PID controller gain, first, the initial value Kj,; is set

by K, such that the matrix /Nll + By K,(C] is stable.

Procedure for Obtaining K,

Step 1: Set Kj, < Ky, find Y and 42 so as to minimize 72 subject to E7Y = YTE > 0

and O(Y, 3% Kiw) < 0in (18) and (19) (i « 1,Y; « Y and 32 « 7°).
Step 2: With the obtained Y; and 77, find K subject to O(Y;,4?; K;) < 01in (19).

Step 3: Again, with K; in Step 2, find Y and 42 so as to minimize 72 subject to E7Y =
YTE > 0and (Y, 5% K;) < 0in (18) and (19) (Y;11 < Y and 77, < 7?).

Step 4: If |9;21 — 95| < &, where ¢ is the prescribed tolerance, stop. Otherwise, let

t < 1+ 1 and go back to Step 2.

Using K, obtained by the above procedure, we state an iterative LMI algorithm for

synthesis of PID controller (12) for a nonlinear plant (1) with (2) as follows:

An Iterative LMI Algorithm

Step 1: Choose a scalar positive constant ¢ and matrices /H; and H, and then set K* «

Kyand Hj «— H,.

Step 2: Find X, W (> 0) and + so as to minimize ~y subject to E7 X, = X, F > 0 and
D(Xep, W, v; K*, Hy) < 01n (15) and (16). Set X, < Xop, W* — W, y* 7.
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Step 3: Find K and H, so as to minimize tr(H3) subject to &( X, W*, v*; K, Hy) < 0
in (16).

Step 4: Iftr(H; — Hy) < 6, then stop the algorithm. Otherwise, set K* « K, Hy <« Ho,

and go to Step 2.

6. A Numerical Example

In this section, we apply the approach proposed in this paper to the problem'” of
synthesizing a dynamic controller to balance a ball on the periphery of a wheel as shown
in Fig. 2, where 6, is the angle between the center of the ball and the vertical axis, 0
is the wheel angular position, and 7 and w are the control torque exerted on the wheel
and the disturbance added to the wheel, respectively. I, is the inertia of the wheel, m;, is
the mass of the ball, and 7, 7, are the radii of the ball and the wheel, respectively. g is
the gravitational acceleration. The physical parameters are listed in Table 1, in which the

numerical values are the same as in M. Ho and J. Lu'®.

Table 1. Physical parameters of ball-on-wheel system.

T radius of the ball 0.0125 [m]

rw  radius of the wheel 0.121 [m]

I, inertia of the wheel 9.938 x 1073 [kgm?]
my  mass of the ball 0.065 [kg]

R, motor armature resistance 1.6 [{2]
K,, motor constant 0.10352 [Nm/A]

g gravitational acceleration 9.8 [N/m?]

In this paper, we assume that the coefficient of friction is sufficiently large and there-

fore the ball rolls on the wheel without slipping. Then, the equations of motion of the
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Fig. 2. Ball-on-wheel system.

system can be written as follows:

—gmbrw (rw +15) 01 () + ([w + gmbrfu) Oa(t) = 7(t) + w(t)

—T7(ry + 1) 01(t) 4 2r,0(t) + 5g sin 61 (t) = 0.
A voltage signal u(t) is generated according to the desired control law and it is supplied
to an amplifier which drives a permanent magnet DC motor to control the wheel. The

relation between the control torque 7(¢) and the control voltage u(t) is given by

K., K2
7(t) = R u(t) — Rmé’g(t), 21)

where R, is the motor armature resistance and /,,, is the motor constant.
Here, note that to maintain the ball on the wheel the centripetal force must be larger
than the centrifugal force:

g cos Oy > (1, +1,)07. (22)
We define the state variables as

T

zp(t) == [ 0u(t) 0i(t) Oa(t) Oa(t) ],
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and set

y(t) = 2(t) = 161 (t) + csba(1),

where the sensor gains are ¢; = 10[V/rad] and ¢ = —1[V/rad]. Then, from (20) and

(21), we see that the ball-on-wheel system is described by
v = ¢(0) :=sin v, (23)

and (1) with the following coefficient matrices:

0100 0 0
A:oooa B:i) s
P 000 1| " o 0

000 d e f

Bpr[O g 0 §2]
Cop=[1000], Cp=Chp=[c1 0 ¢35 0]
D, = 0, D, = 0, Dyw =0

a= (2myr), +7L,) (ry + 1), @=—-2r,K/R.

f = 7(rb + Tw)Km/Raaa gl - 2rw/a
g2 = T(ry +1w) /.

The relation between the function ¢(?) and the sector is illustrated in Fig. 3. This figure
shows that |0| < M implies ¢ € A.
The approximation ¢(0) = ¥ (or sin 6; = #;) yields a linearized closed-loop system

described by (17). Then, setting

Ky=1, Kpe=]—-30 =350 —2], e=0.001,
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U A

V= H2¢91

v = sin 04

Fig. 3. Relation between ¢ and sector.

and using the procedure mentioned in the previous section, after 40 iterations in the itera-
tive LMI algorithm, we obtain

Ki=[Kp K; Kp|=/[—-252420 —96.6606 —0.9425 |

7 = 5.4448.
We choose a scalar ¢ and an initial value of Hy(=: HY) as follows:
0 =0.0001, H$ = 0.99995.

After 16 iterations in the iterative LMI algorithm given in Section 5, we obtain

K = [ Kp K; Kp } = [ —35.0384 —379.6858 —4.1971 }

W =191.2726, v =1.2778, H,; = 0.8588,

M = 53.9112 [deg](= 0.9409 [rad]).

Figures 4 and 5 show the value of performance index ~ and the slope H> for each step,

respectively.
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Fig. 5. The slope H,.
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Fig. 6. Disturbance w.

Disturbance w(t) added to the wheel is shown in Fig. 6. Behavior of 6;(t), 65(t) and

7(t) is depicted in Figs. 7 to 9. We see from Fig. 10 that the constraint (22) is satisfied.

7. Conclusion

A method of synthesizing multivariable PID controllers for systems with sector-bounded
nonlinearity has been proposed. In order to expand the region of the sector and minimize
the Lo-gain, an iterative LMI algorithm has been presented. Although the algorithm does
not have a proof for global convergence, it has a practical use. The authors have applied
the algorithm to design of the PID controller of a ball-on-wheel system, and confirmed

the effectiveness numerically.
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Control torque 7(¢)[Nm]

cos By — (rp + rw)éf/g
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Fig. 9. The torque 7.
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Fig. 10. The constraint cos 8; — (7 4 1,,)6%/g > 0 in (22).
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DVREMEEAT 5. Z2DEMAFITHEI T, LEHPID 2> b v — 7 FGEHRE % SRIE
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Lo-7 A VER/NCT B EHICPID 2y br—7 %G T 220D DKEL 7T LITY X b %
RET 5, RBIC, RETEOANEZBELYT % 7-912, ball-on-wheel (2% L CTPID 2 &
kv — 7 Z2ikEtd 5 BfiEl 2 s g,

F—T—R:SZBHPID av ru—7F; 27 YHERIIGNE, 7A2 ) 78 %47
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