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Abstract

This paper is concerned with a synthesis of multivariable proportional-integral-
derivative (PID) controllers for a class of nonlinear systems. First, mathematical
model of plant with sector-bounded nonlinearity and multivariable PID controller is
given. Secondly, the closed-loop system is described by a descriptor form. A suffi-
cient condition for checking the -performance of descriptor systems with sector-
bounded nonlinearity is introduced. Based on the condition, the problem of synthe-
sizing multivariable PID controllers is formulated as a bilinear matrix inequality one.
The problem is solved by an iterative linear matrix inequality algorithm to synthesize
a PID controller so as to expand the region of sector and minimize -gain. Finally,
the synthesis method is applied to the synthesis of a PID controller for a ball-on-
wheel system to verify the effectiveness.

KeyWords: multivariable PID controller; sector-bounded nonlinearity; descriptor
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1. Introduction

It goes without saying that most of dynamical behavior of industrial apparatus is de-

scribed by nonlinear mathematical models. Over the past few decades, the concept of

sector-bounded nonlinearity has been used in order to analize and synthesize a class of

nonlinear systems1). In recent years, methods of analyzing and synthesizing the systems

with sector-bounded nonlinearity via linear matrix inequality (LMI) have been vigorously

studied, and applied to various nonlinear systems such as systems with input saturation2).

The convex optimization problem subject to LMIs can be solved efficiently by the interior-

point method3).

The proportional-integral-derivative (PID) control scheme has been widely used in

various industrial control systems, and most of conventional PID controller synthesis

methods are based on the relatively simple representation of plant dynamics such as the

characterization by a single-input/single-output model. These are, however, not necessar-

ily sufficient for plants with multi-input/multi-output.

Recently, multivariable PID controller design method in time domain4),5),6),7) and a pre-

assigned structure-constrained PID controller design method8) in frequency domain have

been proposed. However, these methods have dealt with only design for linear plant.

In this paper, a method of synthesizing multivariable PID controllers for systems with

sector-bounded nonlinearity so as to minimize the -gain and expand the region of sector

is presented. Then, this paper extends the analysis condition proposed by F. Wu and B.

Lu2).

The paper is organized as follows. In Section 2, mathematical model of nonlinear plant

with multivariable PID controller is given. The analysis condition is obtained in order to

synthesize multivariable PID controllers for systems with sector-bounded nonlinearity in

Section 3. Section 4 is devoted to the formulation of our problem as an optimization

one, which is subject to a bilinear matrix inequality (BMI). In Section 5, multivariable

PID controller is first obtained for a linearized plant, and then, the controller for nonlinear
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system is determined so as to expand the region of the sector and minimize the -gain by

an iterative LMI algorithm. In Section 6, the synthesis method is utilized for synthesizing

a PID controller for a ball-on-wheel system to illustrate the effectiveness.

The principal symbols used in this paper are listed below:

R set of all real -vectors

R set of all real -matrices

-identity matrix

transpose of a vector or matrix

is positive (semi-)definite

is positive (semi-)definite

diagonal matrix whose elements are

trace of matrix

norm of matrix defined by

norm of vector defined by

2. Problem Statement

Consider a time-invariant nonlinear plant described by

(1)

and

(2)

where R , R , R and R are the plant state,

control input, measured output and controlled output, respectively. R is the
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exogenous disturbance such that , and , , , , , , ,

and are constant matrices of appropriate dimensions. The matrices and are

assumed to be of full column rank and full row rank, respectively, i.e., and

.

The vector-valued function : R R is a nonlinear function which is assumed to

belong to

(3)

where R , , , and

.

The relation between the nonlinear function and the sector

for given , and is shown in Fig. 1. Throughout this paper, the slope

matrix is fixed for simplicity.

Fig. 1. Relation between nonlinear function and sector.

The control input is generated by the following multivariable PID controller :

(4)

where , and are the PID controller gain matrices of appropriate dimensions.
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In this paper, we develop a method of synthesizing PID controller (4) so as to minimize

and , where is an index in the performance condition , and

the minimization of stands for the enlargement of the sector.

3. Analysis of a Class of Descriptor Systems with Sector-bounded
Nonlinearities

In order to synthesize PID controller (4) for systems with sector-bounded nonlinearity

in , we introduce the following proposition obtained by extending the result by F. Wu

and B. Lu2).

Proposition: Assume that a scalar , diagonal matrices and and coeffi-

cient matrices and in the system

(5)

are given. If there exist a nonsingular matrix and positive-definite diagonal matrix

such that

(6)

(7)

where , then, for all , the system

(5) with satisfies provided that .
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Proof: By the Schur complement formula9), we see that (7) is equivalent to

(8)

Multiplying (8) by on the left and by its transpose on the right and using (6),

we have

(9)

For all , (9) implies

(10)

Integrating both sides of (10) from to , we have

(11)

If , then from (11) we have

and therefore . (Q.E.D.)

4. Problem Formulation via Matrix Inequality

In this section, applying Proposition , we formulate our synthesis problem by matrix

inequality.

Consider a controller with -dimensional vector process R :

(12)
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where R is a preassigned constant matrix which is chosen appropriately ac-

cording to the structure of the PID controller to be synthesized. Setting ,

and yields the PID controller gains in (4). Furthermore, in-

troducing a vector defined by

(13)

we describe the system which consists of (1) and (12) in the descriptor form:

(14)

where

Proposition proves that if there exist a nonsingular matrix , a positive-definite

diagonal matrix , a diagonal matrix ( ), a matrix and a positive
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scalar satisfying

(15)

(16)

where

then there exists a controller (12) (or (4)) which achieves the specification that the closed-

loop system satisfies the condition for .

Thus, our problem of determining the controller gain matrix is formulated as fol-

lows:

find , , , and so as to

minimize and

subject to (15) and (16).

This is a BMI problem, and it is difficult to convert it into a sort of convex optimization

problems such as LMI problem.
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5. Synthesis of PID Controller

In this section, noting that fixing either or in (16) yields LMI in

the other pair of matrices, we propose an iterative LMI algorithm to solve our problem.

The algorithm does not have a proof for global convergence.

In order to solve the problem of finding , and so as to minimize subject to

(15) and (16) with fixed and , we need to calculate and in advance.

First, we obtain by solving the problem of synthesizing a PID controller for a

linearized plant, where the linearized plant is obtained by the approximation

(or ). Then, the resultant linearized closed-loop system is described as

follows:

(17)

where and .

The controller gain in the linearized system (17) is denoted by in the sequel.

Given a matrix and a positive scalar , the system (17) is admissible and

holds, where is the transfer function matrix from to , if and only if there exists

a nonsingular matrix such that

(18)

(19)

hold10).

9
41



Consequently, the problem of synthesizing PID controller under criterion, i.e.,

is formulated as that of finding matrices , and a positive scalar

satisfying the conditions (18) and (19). Note that (19) is BMI in and .

Noting that fixing either or in (19) yields the LMI condition in the other matrix,

we minimize locally by the iterative LMI algorithm for and . Here, since the

algorithm requires an initial value of PID controller gain, first, the initial value is set

by such that the matrix is stable.

Procedure for Obtaining

Step 1: Set , find and so as to minimize subject to

and in (18) and (19) ( and ).

Step 2: With the obtained and , find subject to in (19).

Step 3: Again, with in Step 2, find and so as to minimize subject to

and in (18) and (19) ( and ).

Step 4: If , where is the prescribed tolerance, stop. Otherwise, let

and go back to Step 2.

Using obtained by the above procedure, we state an iterative LMI algorithm for

synthesis of PID controller (12) for a nonlinear plant (1) with (2) as follows:

An Iterative LMI Algorithm

Step 1: Choose a scalar positive constant and matrices and , and then set

and .

Step 2: Find and so as to minimize subject to and

( , , ; , ) in (15) and (16). Set , , .
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Step 3: Find and so as to minimize tr subject to

in (16).

Step 4: If tr , then stop the algorithm. Otherwise, set , ,

and go to Step 2.

6. A Numerical Example

In this section, we apply the approach proposed in this paper to the problem12) of

synthesizing a dynamic controller to balance a ball on the periphery of a wheel as shown

in Fig. 2, where is the angle between the center of the ball and the vertical axis,

is the wheel angular position, and and are the control torque exerted on the wheel

and the disturbance added to the wheel, respectively. is the inertia of the wheel, is

the mass of the ball, and , are the radii of the ball and the wheel, respectively. is

the gravitational acceleration. The physical parameters are listed in Table 1, in which the

numerical values are the same as in M. Ho and J. Lu12).

Table 1. Physical parameters of ball-on-wheel system.

radius of the ball [m]

radius of the wheel [m]

inertia of the wheel [kgm ]

mass of the ball [kg]

motor armature resistance [ ]

motor constant [Nm/A]

gravitational acceleration [N/m ]

In this paper, we assume that the coefficient of friction is sufficiently large and there-

fore the ball rolls on the wheel without slipping. Then, the equations of motion of the
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Fig. 2. Ball-on-wheel system.

system can be written as follows:

(20)

A voltage signal is generated according to the desired control law and it is supplied

to an amplifier which drives a permanent magnet DC motor to control the wheel. The

relation between the control torque and the control voltage is given by

(21)

where is the motor armature resistance and is the motor constant.

Here, note that to maintain the ball on the wheel the centripetal force must be larger

than the centrifugal force:

(22)

We define the state variables as
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and set

where the sensor gains are and . Then, from (20) and

(21), we see that the ball-on-wheel system is described by

(23)

and (1) with the following coefficient matrices:

The relation between the function and the sector is illustrated in Fig. 3. This figure

shows that implies .

The approximation (or ) yields a linearized closed-loop system

described by (17). Then, setting
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Fig. 3. Relation between and sector.

and using the procedure mentioned in the previous section, after iterations in the itera-

tive LMI algorithm, we obtain

We choose a scalar and an initial value of as follows:

After iterations in the iterative LMI algorithm given in Section 5, we obtain

Figures 4 and 5 show the value of performance index and the slope for each step,

respectively.
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Fig. 6. Disturbance .

Disturbance added to the wheel is shown in Fig. 6. Behavior of , and

is depicted in Figs. 7 to 9. We see from Fig. 10 that the constraint (22) is satisfied.

7. Conclusion

Amethod of synthesizing multivariable PID controllers for systems with sector-bounded

nonlinearity has been proposed. In order to expand the region of the sector and minimize

the -gain, an iterative LMI algorithm has been presented. Although the algorithm does

not have a proof for global convergence, it has a practical use. The authors have applied

the algorithm to design of the PID controller of a ball-on-wheel system, and confirmed

the effectiveness numerically.
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Fig. 10. The constraint in (22).
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非線形系に対する多変数
PIDコントローラの設計

本論文では，非線形性を有する制御対象に対する多変数比例・積分・微分 (PID)コント

ローラの設計手法を検討する．はじめに，セクタ有界非線形性を有する制御対象と多変数

PIDコントローラの数学モデルを記述する．つぎに，その閉ループ制御系をデスクリプタ形

式で表現する．セクタ有界非線形性を有するデスクリプタ系の -運転性能を検証するため

の十分条件を導入する．その条件に基づいて，多変数 PIDコントローラ設計問題を双線形

行列不等式 (BMI)問題として定式化する．本論文では，考慮される非線形性の領域を拡げ，

-ゲインを最小にするように PIDコントローラを設計するための繰り返しアルゴリズムを

提案する．最後に，提案手法の有効性を検証するために，ball-on-wheel系に対して PIDコン

トローラを設計する数値例を示す．

キーワード: 多変数 PIDコントローラ;セクタ有界非線形性;デスクリプタ系;行
列不等式; -運転性能.
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