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Abstract

In this paper, type criteria for Mébius transformations in R”, which only depend on
coefficients in the Mabius transformation expression, are given. In addition, a chordal
distortion theorem is established.
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1. Introduction

Let R” be n-dimensional Euclidean space, R®=R"U {0} be the one point compactification
of R" and M(R") be the Mébius group of all orientation-preserving Mobius transformations in
R". Using the Clifford matrix representation of Mobius transformations in high dimensions,
AhlforsV? discussed the classification and type criteria of elements in M(R" for n=> 3.
Fang, Liu, Wang and other authors improved on Ahlfors’ results.¥”™® In this paper, we
continue this study. Type criteria for Moébius transformations in R" which only depend on
coefficients in the Mobius transformation expression, are given. In addition, a chordal
distortion theorem is established.

2. Preliminary material

We require the following preliminary material.
Let A, denote the associative algebra over the real numbers generated by 1,e1,e2,....€n—1
subject to the relations

ef= —1. eie; = —eje;(isFj), i, = 1.2,..n—1. (2.1)
For any g€ A,, there is a unique representation in the form

¢ = ao+ 2, a.E, | (2.2)
where ao and a, are real, the summation is over all multi-indices v = (v1,v2....,vp) With

0<mn<12..<1p<n—1, and E, = e,,,,...65, G0 is said to be the real part of a denoted by
ao = Re(a). The modulus of a is defined by
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lal = (ad+ 2 a,,z)é. (2.3)

Let @ be the element obtained from g by replacing every ¢; in (2.2) by —e; and a™ be
the element obtained from a by reversing the order of the factors in each E, = ey e,,... ¢, and
a=(a)" = (a*). Clearly, (a+b)' = '+ b, (ab) = a'V, and (ah)™ = b¥a™.

All the elements x = 2o+ x1€1+ -+ Xu—18a—1 (%xER, = 0,1,...,.n—1) are said to be the
vectorial elements in A,, denoted by x€R" Let I, be the set of all elements in A, which can
be expressed as a finite product of non-zero vectors in A,. This is said to be the
n-dimensional Clifford group.

ab

A= ( c d) is said to be an n-dimensional Clifford matvix if
(i) abede U0}

(ii) det(4) = ad™ —bc™ = 1;

(iii) ab™, bd™, ac™, cd™ € R™

Let SL(2, I',) denote the group of all n-dimensional Clifford matrices with a matrix
product operation. Set

PSL(2,T,) = SL(2,T,)/ {1},

where [ is the unit matrix.

ab

LetA=(c d

)EPSL(Z,F,,) correspond to the mapping in R"

x— Ax = (ax+ b(cx+d) " (2.4)
This is an isomorphic correspondence between PSL (2, I',) and M(I—{"), hence these are not
distinguished.

Let A,+1 be the associative algebra generated by 1,e;,e2,....e.—1 and e, which contains
A, as a subalgebra. Let f € M(R""!) denote the Poincaré extension of f& M(R").® Write

fix(f) = lxeR™: f(x) = xI,
fix(f) = lz= s+ te,e H" : f(29) = 2},

where H*! = (o +1e1 4 +o+ + 201601+ ten: 5:€R, t >0 CR™ . For f& M(R"), we can
say that

(1) fis fixed-poini-free if card ( fix(f)) =0
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is parabolic if card (fix(f)) = 1 and card (fix(f)) = 0;
is loxodromic if card (fix (f)) = 2 and card (fix ( F))=0:

)
is elliptic if card (fix( f)) = 0 and card (fix(f)) + O,
I (M) is the number of elements in the set M.
nown 9® that

1 2.1, fis fixed-point-free if and only if card (fix(f)) = 1, and then f is elliptic if and
L(fix(F)>1.

ows that

1. Let f= fi’) € M(R"). Then

i loxodromic if f conjugaltes to ( %’1 1,9 1, ) ,

there >0, 7+ 1, A€, and [A] =1;

s parabolic if f conjugates to ( é ;t, ) ,

here A, w €l [Al =1, us0and Au=uld"
is elliptic if f conjugates to ( é 2,) ,

here AT, |Al =1and A+ £1.

3. Representations of Mébius Transformations

noted that types of Moébius transformations are invariant under conjugate
ition. In order to study the type of f& M(R", we may assume that oo & fix( ).
e are two representations of f:

= (% Yo fto) = axt Blext e # 0 (3.1)

, A (x—)

xX)=u+—FT""5", (3.2)
| x—v|

& R" >0, A is a real orthogonal n-order matrix and det (4) = —1.

ows that the isometric sphere of fis

r=lxeR" |x—v| =7}, (3.3)

c o= —¢c ', r=|cI™' and
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¢ ¢ v =
Axr= — — ¥ —— for x € R", (3.4)
ol 7 el
where x is of the form x = (x0,....x,—1)" at the left of the equality and the form x = x0+ %11
+ .. +%s_1€.—1 at the right of the equality.
This shows that A depends only on ¢, denoted by A(c¢).
The Poincaré extension of fis

N ¥B(z—17) 1
F@ = +———5 z= x+te, cH""", (3.5)
|z2— |
where 11 = (g) v = {3) B= (é ?) or it is written as follows.
(ax+ b)(cx+d)+ Lac+ te,
fla) = 2 tz 2 (3.6)
lex+d|*+¢]c]

Proposition 3.1. Let ce€ T,\ {0} . Then uc = —(cu) for ‘ucR*\ {0} if and only if
det (I—A(¢) + 0.
proof. uc = — (cu) if and only if — cu'c ' —u =0, that is A(u — u = 0. And then
uc + —(cu) if and only if det (I—A(¢)) #+ 0. O

Proposition 3.2.9 If det (I— A(c)) + 0, then f is fixed-point-free, loxodromic or parabolic. Thus,
det (I— A(¢)) = O if f is elliptic.

4. Type Criteria
For fixed-point-free elements and elliptic elements we have the following theorem.
Theorem 4.1. Let f= (? é’)eM(R"), ¢#+ 0. Then
(3) f1is fixed-point-free if and only if det (I— A(¢)) = 0 and
| 1= A (ac” ' +c7 ) | < el 7 (4.1)
(17) fis elliptic if and only if det (I— A(¢)) = 0 and
| (I- A (ac " +c7'a) | < el (4.2)

where M is the Moore- Penrose inverse of a matrix M.

Proof. It is known from [6] that if f is fixed-point-free, then det (I — A(¢)) + O and the
condition (4.1) holds.
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Conversely, the condition det (/— A(c)) # O implies that fis not elliptic by Proposition
3.2. From condition (4.1) it follows that

z= 1o+ toes € fix( f). (4.3)
where

X = [I—A(c)]+(ac_]—i;c_'d)—c—]d (4.4)
and

b=+ lel ™= [ I— A (ac” '+¢c ') |2 >0. (4.5)

Therefore, fis a fixed-point-free element. (i) is proved.
It is well known from [1] that if fis elliptic, then
fx( NSNS =+ 0.
It follows by simple calculation that det (/— A(¢)) = O and the condition (4.2) holds.

Conversely, the condition (4.2) implies that fix( f) @ for the same reason as above. It
shows that fis elliptic if det (/— A(¢)) = 0. (ii) is proved. [l

In order to establish the type criteria theorem for parabolic elements, we can show that
parabolic elements have an interesting geometric quality as follows.

Lemma 4.1. If f= (g 5) is parabolic with ¢ = 0, then the isometric spheves Syand Sy of f and

F 1 are outward tangential.

Proof. Let ¢ = %(ac_l+c_1d), g= ((1) f) where 3 = %(c-ld—ac_l). Then,
6 *0, |ol = |cI ™" (see[1]) and
—1 oc 0 -1 -1 ¢ ot 0
&g =( e co ),gf g =(_6—1c—16—1 ol
The isometric spheres
See-=1xeR% [x+ 0|l =lel™ Seppo=12eR% | x—0cl =locoll

are outward tangential, as are the isometric spheres Srand Sy

ab

Theorem 4.2. f= (C d

) with ¢ %= 0 is parabolic if and only if
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| U—A) T (ac ™ +c ') | = lel 7, (4.6)

lac ™ '+c¢7'd | =2 ¢l 7} (4.7)
and

[I—(I— A(NI—Ale) " (ac™ ' +¢ 'd) = 0. (4.8)

Proof. Suppose that fis parabolic. Then, the condition (4.7) holds and the equation system

x=ac '+ Ax+c 1d)

_ _ 4.9
| x4etd ] =l ()
has a unique solution.®’ Therefore, (4.6) and (4.8) follow.
Conversely, suppose that the three equalities (4.6)-(4.8) hold. Let
-1 +, -1, -1
x=—c¢ d+U—A(0) (ac "+c¢ “d). (4.10)

It follows from (4.6) and (4.8) that x € Sy fix( f). Thus, fis not loxodromic. On the other
hand, it is known from (4.7) that the isometric spheres Syand Sy are outward tangential.
This means that fis not fixed-point-free or elliptic because of (4.6). Therefore, fis parabolic.

]

Following from Theorem 4.2

Corollary 4.1. Suppose that det (I—A(c)) == 0. Then f is parabolic if and only if (4.6) and (4.7) hold.
For loxodromic elements we obtain the following result from Theorems 4.1 and 4.2.

Theorem 4.3. f= ( a 5) with ¢ # 0 1is loxodromic if and only if one of the following conditions

holds :

() | (—A) (ac” d) | > lel™!
(1) | (I )+ ac d ] =lel P and | acT ' +c ] +=2 el
(449) | I—A( N (ac” +c ‘d | = lel™" and [I—(I— A()I— A() ) (ac” ' +¢"d) + O.

5. A Chordal Distortion Theorem

In this section we prove a chordal distortion theorem for elements in M(R™.

Theorem 5.1. Let K be a compact subset of a domain D in R". Suppose that

f=(% DYem® and g7'0), £ ()¢t D
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Then
d(g0 . g < —o D 5.1)
%), S—— . .
E0 8= | g2
where d (u , V) is the chordal distance between u and 0¥
1
m=7mf1d(u, v):u¢D veEK]. (5.2)
Proof. Because g '(0). g '(co)& D, we have
om < dix. g \(oo)) < 2 | x+d*(c*)" |
m = X, o)) = 1 — T
g 1+ DA+ [a? [ TD)?
B 2 | cx+d |
1+ 255 lel®+ [d[®?
and
o < 2 |ax+b|
m = 1 .
(1+ &%) (la|*+ [0])*
Then
(1+ |x2m? 1 gl ®< lax+bl?+ |cxtdl® (5.3)
We know that V
g0—g0G) = ((ex+d) N x—n (ey+ad) " (5.4)
It follows that
d(g(n. &0) _ 1+ | ; 1+ [y° 55
d(x, ) _( |ax+ b2+ |cx+dl|? ) ( lay+ b2+ |ey+d|? | '
Therefore, the theorem is proved. . O
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