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Abstract

The purpose of this paper is to show the variational formulas of potential theoretic
quantities on arbitrary Riemann surfaces under quasiconformal deformations. e have
already given the variational formulas for Riemann’s period matrices and certain abelian
differentials. There we used a notion of behavior spaces in the Hilbert space over the
complex number field. In this paper we shall use behavior spaces (Shiba’s type) in the
Hilbert space of first order complex differentials over the real number field. Applying
the previous consideration to them, we can get a variational formula of Green’s functions
on arbitrary hyperbolic Riemann surfaces, which is an extension of the one by Guerrero
on finite Riemann surfaces. Further we shall obtain the variational forn:ulas for period
reproducing differentials, slits mappings, Neumann’s functions, Robin’s constants and
Bergmann kernels.

1. Introduction

The variational formula for Green’s function has been investigated firstly by
Hadamard and later by Schiffer and many other authors!?. Recently Guerrero4 discussed
the variational formula on finite Riemann surfaces by using the quasiconformal mappings
and Fuchsian groups, and he asked its gencralization to arbitrary hyperbolic Riemann
surfaces.

In this paper we shall study the variational formulas of potential theoretic quantities
on arbitrary hyperbolic Riemann surfaces induced by quasiconformal deformations
depending on a complex parameter. For such a general case, we have already given
several variational formulas for the abelian differentials by using a certain (complex)
behavior space®,®,9.  Similar formulas can be obtained for Green’s functions and other
fundamental functions. However, in treating the real functions, it is appropriate to use
the real behavior space. In the present paper we shall therefore use the (real) behavior
space of Shiba’s type and show the variational formulas for Green’s and Neumann’s

functions, Robin’s constants and Bergmann kernels.
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2. Behavior spaces and quasiconformal mappings

2.1. Let R be a Riemann surface and A=/A(R) be the Hilbert space of square

integrable complex differentials on £ with the usual inner product defined by

O d= [ MAder=i [[ (@aetoi6)deds,

where A;=ai(2)dz4-i(2)dz i=‘1, 2, for a local parameter z. We denote by A the complex
conjugate of A and by A* the conjugate differential of A. As Shiba did, we regard A as
a Hilbert space A=A(R) over the rcal number field with a new inner product

<A1, Azp=Real part of (A1, Az) 19,

Let I'==I"(R) be the subspace of /A which consists of square integrable ree/ differentials.
As for the notations of subspaces we follow Ahlfors-Sario® and Shibal®, for example,
Aoy Apy Aiyse, Ape (Ley I'iy I'hse, T'ne) the subspaces of closed, harmonic, harmonic
semiexact, harmonic exact differentials and Aym, Ao, Aeo (Iim, I'ro, I'eo) the orthogonal
complement of A%, A¥, in Ay (', 'y, in I'y) and of Ay in A, (Iwin I':). We know

Lemma 1, (¢f. 13))

Ah:/lcn/lc*, A::Ah—l"Aca—I_Aco*, Ac-_—"AJ;—l—flga.

Let I'; be a subspace of I'; and I's! be the orthogonal complement of I'; in I's, We
set Ay=I+il1*, Then A, is a subspace of A,. Now let wi, w2El: and ws, wiE
I';1. We have

dwrFiws*, i(wz-fiws*)*)
=Re{(w1, wg)+{ws*, we*)—i[(wi, we*)—(ws*, wy]}
=0.
Thus we have an orthogonal decomposition of A,.
Ah:Ar-l-lnx*.

Definition. A meromorphic differential | on R is said to have a Ag-behavior if theve
exist @ compact set K and differentials \E Ay, M E Aeo such that p=2A1+44o on R—K.

2.2. Let f be a quasiconformal homeomorphism from a Riemann surface £’ to &.
Then f induces an isomorphism f# from A(X) to A(R’):

SN =[a(2)2c+6(2)z] AL+ [a(2)2e+-8(2)zE] AL
where A=a(2)ds+4(z)dzE A(R), z, Z(é<7>§) are the local parameters on &, R and sz,
¢, 3¢, 3¢ are distributional derivatives®,10, Let 2 be a natural projection from 4 to 4,
and set fi#=2Fo f¢*. We shall make use of the following lemmas.
Lemma 2. (c¢f. 10), 11)) The mappings (V) ft and (FVite fif are identity
mappings on A and Ay respectively.
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Lemma 3. (¢f. 6))
(FAro*, fHre*De=(11, 7 for any 71, T2:EA(R),
(fifw)*, fif(wa®)rr=(w1, wa)r  for any wi, waE A(R).

Lemma 4. (¢f. 10), 11))  The fi¥f preserves the subspaces I'n, Iiso, T'hoy Tho annd .
We set

/}-x“:[’ha’l"z'Fka; Ax1={0}+l]—'h, /1;2=F/,,,;-+~Z'F/,N.

Then we have by Lemma 4,
Lemma 5. fi¥{(di(R)=A:#(R") (=0, 1, 2).

3. Meromorphic differentials with a Ax-behavior

3.1. In order to get the variational formulas we need
Proposition 1. (¢f. 1), 7)) Let f be a quasiconformal homeomorphism from R' to
R and the Beltrami coefficient u of [~ satisfy |p|<i<1. Let F be a closed region in R
which contains the support of u.  Assume that [i¥(A«(R)=A«(R"). Let s (resp. ') have
a As-behavior on R (resp. R'). Assume that 3 has no singularity on F and
(.f—l)#(()b’) _‘/’EAx_I_Acw
Then we have
() ipeledz—illz=/IFipl:dzllz,
. , 1
(i) [[¥eledslle <55 Il

(i) 1 Lede—ipll <l

@) I —le < T2 i,

where ¥ (resp. V') denotes a primitive function of  on R—{A4;j, Bj} (resp. ' on R'—
{4, BiY), ({4;, Bi} is a canonical homology basis on R (mod dR) and so {Aj', Bi'}, the
image of {Aj;, Bj} by f forms a canonical homology basis on R' (mod OR')).

Proof. Since A:+1., is orthogonal to 74.*4-/,,*, we have
0=/~ ¥ ) —h, (/7R )—h)*>
—Rei / A (WLl —W e — Wiz dads.
Thus

[Peledz—ihlle=I||Pepl.dz]le
<AI¥eLedallr.

Therefore
FiLAsllr—|lllr <A ¥{Ldz2llF,
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and
, 1
Hlyczzdzllré—lf'gﬂl/lﬂr.
Hence
, )
IIY’chdZ—*ﬁllRéT:;I!sﬁ!ip.
We have

D80 —dliz
=i [ [ (W= Vil Pelel)dsds
=2||¥iul.dzliz
<ol
This completes the proof.
3.2. Let peX& and Vi be a parametric disc abdut 2 with local variable z. We set

Vi={p' € V1; |2(p")|<r}(0<7r<L1) and P,={p, ¢} for n=0, {p} for n>1. Take a ¢&
Vis2.  Then there exist functions s, & C2(R—2,) such that

2z .

5o 1og,m‘ on Vi
0 on R— 1,
1 1 =
. z[-—;l{eg,} on Vl/‘.’. (”21)'
IO on R—Vy

Denote ds,=o,. Now since / an*= / a.*=0, there exists a C'-closed differential
2!=1/2 jz'=1
&» such that Gs=0c,* on (R— V1)U V1,2. Then g,46.*EA and a,46,*=0 on (R— V1)
U712 By the orthogonal decomposition we can write
On +5n*=An +Xn, /\neAx—l‘Aw, ';‘:xez./l:*‘l‘/leo*»

Set $n=0s—As=As—&»*. Then ¢, is closed and coclosed, hence ¢, is harmonic in Z—
P,. Since ip.*=sd* on K— V1, the meromorphic differential Yu=¢,+7h,* has a A,-
behavior. The o (resp. i, n=>1) has singularities d?z_%_;dzz(y) (1‘esp. %) Further
note that

Sl‘n_(Un‘}'Z'O'.'n) =¢n—0n-l—i(¢»*—5n)=‘_/\ﬂ'l"l'xn*,
and ¢, —(os+754) belongs to A;4A.,. Assume that 7; does not meet #. Then we have
LD )=, #pa*>rv,
=) =, i(n—(on+i64)*Dr-v,
=~V —h, iGPn—(on+764)*Dv,
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=_Re: A . (Fof =)

2 Re (¥ of~1(p)—¥'ofUg) —(¥(p)—¥(g)} for n=0
= %",1 Re {%%f—l( p)—%‘l’(p)} for n>1.

Now let 7,=(p'; ls(#")|<e}U{p'; |2(p")—2(g)|<e). Then

—limi [ ('of1— ¥
=2 {(F'of~1(p) =¥ () —(¥'o/Ug)—¥ (gD}
Hence, even if /' contains p and ¢, we have
lim <CF) —d, Fo¥a-
=2m Re{(¥'of1(2) =¥ () —(¥'/ ) —¥(2)))
Hereafter, the singular integral (w, o) means the Cauchy’s principal value lirzl (w, 0)r-7.
if it has a finite value.
Proposition 2. Let (f YWY )—4EN:+Aeo. Then
)~ 2o*de
=27 Re (¥'of71(p) —¥(p)—(¥'/ ") —¥(9)))
If the support of p does not meet V,={p'; |2(p")|<e},
)~ #a* e

2 ., d»
=2 Re [ L ¥ of U)o P(P)] for n21.

4, The variational formula for for the real part of a Ax-behavior

Let pu(z, 2) % be a Beltrami differential with a complex parameter 7 on R and # varies
a neighbourhood of zero in the complex plane. Assume that u(z, 7) (u(z, 0)=0, |ju(z, £)!|
<1) is analytic with respect to 7 for a fixed z and % w(z, 2) is bounded and measurable.

Now let R, be a Riemann surface and f; be a quasiconformal homeomorphism from &; to
R such that

%%f.:%f—:#(z, t).

Assume that (/)#(A:(&R))=A:(R,) and there exists a meromorphic differential ' on &,
with a A.-behavior such that
(frP) —4 EA(R)+Aeo( R).

We also denote by ¥* the primitive function of §* as mentioned before and by ¥,* that of
Ya'=(a)*. For simplicity we omit 7 in these notations when 7/=0. Here we have the
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following variational formulas.

Lemma 6. (cf. 5)) Let ||u(z, 9)llo=esssup |u(z, 2)|=A()<A<1. Ifllm kl(fl)
then
d, . R

H’lc—«ff 1)‘(’7[")_¢; z*ﬁn*)R-Vs!r:o

=—Z.—/:/R—7‘(W)z(gjn)x%ﬂ(z, O)dng (72=0, 1, 2, ...).
Proof. We first remark that

(D) —, 2ha*)r-7.

= [ (DL — P+ (P1)cLzds) Ad(¥)ed

——i [ (PP dLadsdz

- / fF 5, (P Pupu(z, )dsds

—i [, (P(P)Le—Polule, )dsds.

Next we have

lim |~ S @~y 2D #5D 404 ]

<tim 2| [ @I Pdas

< tim 2D, 5 Lds— e .

Ok
<llgalle - llm a=zoya e

=0.

Thus we can conclude the assertion.
Proposition 3. Let ||u(z.2)||-<A<1 and lim |—11_|—]p.(z, H1)—plz, H)|<oo.  Assume
. >0

that the support of p does not contain the poinis p and q. Let fn and st have the same
stngularities al p and g such that (fi ) (s')—YaEAs+Aeo.  Then

5 Re (Prefim(p)—¥1ofg))

_;Z// (gn)caﬁ—l(yfor)cof,—la%p(z, #)2dzdz,
2 Re 4o ¥/ (p)
'=_Z_1-T,- / /R (Y/t)coﬁ'l('f’,,')cof}ﬂ%y(z, £){2dzds.

Proof. Take a ¥, which does not meet the support of u. We have by Lemmas 1
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and 2,
(fra @) —(fr W), n®)e-7.

=(ffe(FZ R @) 4, i(FH ) Pre-7at (Pt =fd(P).

67

Since fito(f1) ! +) —d EA(R)+Auo(R:) and 2(fF(ha) —ha®)*E #(A(R)*+Auo R1)*),

we have
LSHARH) =W, pa*dr-,
=AU TR =Yt D, -7
The Beltrami differential of f7;./: is the following®

L ple 41 —p(s, 2) de
Gi 1—ulz, Hple, t+7) 70 dl

If we denote this by v(, T)Eg‘, by Lemma 6 we have for r=#-7v

7 B B VWY
—Re (Lo ) — i, i )e, i
——Red [[, @0 lim D qag

——Rei [ e R D ep drar

— _Re: / /R 5 (F 0TI f,‘I%p(z, .2 dads.

Similarly we have

I D al e T m

——Rei [, L (POfiri(P)eef iggite, D2 dadi.

Hence
2 )=, — e,

_ ¢ Cz (-"‘(z) t) 7
=5 [ oy 5 O e atat

:_7//;-7'(Yit)coﬁ—l(q:’"f)coﬁ—l‘a—t‘#(z, 2)¢.2 dzdz.

From Proposition 2 the statement follows.

Let a cycle C in R be represented as é [2i, pi+1] and set .= éz/:,,-,,m, where
i=0 i=0
Poispier=tho for g=p;, p=pis1. Let denote by y%, the differential on £ corresponding to

c which has a /,-behavior.
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Corollary Let C not meet the singularities of . Then
] —i d 2 Aoz
2 Re [ =" [ (F)efirr (P L)eofimr e, )Lt dads,

Remark. Since (fi )¥(ts) —cEA:+A.o, this variational formula is valid for the
case that the support of x meets C.

5. The case of Green’s and Neumann’s functions

Some slit mappings on finite bordered Riemann surfaces are given by meromorphic
differentials with a /,:-behavior!® and the variational formulas are given in Proposition
3. Now we shall show that the variational formulas for Green’s and Neumann'’s functions
are those of meromorphic differentials with the A and the A,o-behavior respectively.
Let G}« (resp. G,r) be the Green’s function on & with the pole at p* =f,~1(p) (resp. ¢*=
fi~4g)) and NV« be the Neumann’s function on &; with poles at p; and ¢, Write
Ght g=Gh—G .

Lemma 1. The differential A(G e o) +id(G 'y (0)* has the A-behavior and A(V'; 1)
+7d(V 4t 0)* has the Aso-behavior.

Proof. Let oo* and &¢f be the differentials on &, corresponding to go and &o on 2
(see sec. 3). Note that 2d(G4r 1) +(o0' +00") belongs to I'y, and 22(Gs ;) —(5o' +50°)*
belongs to I's4-I'.o* because it is coclosed in R:—{p*, ¢*}. Hence d(G s o) +2d(G s ,1)*
has the /:-behavior. As for the Neumann’s function it is clear that 24(V j: ,1) + (oot +
a0o*) belongs to '+, and 2d(NV ¢ ,1) —(&o' +60')* is coclosed in &R, —{p?, 4). Further

we know
{2d(NV 4t 1) — (60" +Gd*)*, day=0 for dAE [ye.
Hence 2d(V}s 1) —(0’+60")* belongs to I'yo*+Tuo*. Thus d(NVhe ) +7d(V% ,)*  has
the A.o-behavior.
If the support of y does not contain p and ¢, clearly we have that (/i )¥d(G}+ )+
1A(G 4t,e0)¥) —(A(Gr.) +7d(G,0)*) belongs to As1+A,,, and that
(S DAY §t,00) H1A(V 4t 1) *) —(d(Vp,0) +2d(V),0)*)
belongs to A:e+.,. By Proposition 3, we have
Proposition 4. Let the support of p not contain the poinis a, b, p and g. Then
d
27 (G arst (2 =Gl 4t (")}
] d 3 d
=—%/'/R‘g(G',tlbt)v(r—lﬁf(G;',p’)°ff_1-a7l"(z’ 2)¢.*dzdz,

)
gj{sz,bf(P')—N:*,u (g9}
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] d 0
==/ 5Z(zv:,,,,ooﬁ-l—az(N;f,,oofrl—;%p(z, 9.2 dzdz.

™

Corollary. Assume that there exists a sequence (ga}CR—F suck that lim psuE
ny00 Pl
Gen(p)=0. Then

9 Z d d d
ng,:(p') =—'l£7’—.//kg Gl :‘1'82‘ Gieo Flﬁp,(z, £l 2dzdz.

Proof. For a fixed # set émw=gm. Now let z tend to infinity. Note that lim
Gt p(gs)=0 and ||d(Gys 4G yo)lls~1y converges uniformly to 0 with respect to 7.
Successively let 7 tend to infinity. Then lim Gr 4 (#*)=G (") and the right side
of the formula in Proposition 4 (6=bm, g=;:)mconverges uniformly to that in Corollary
with respect to 2. Hence the assertion follows.
Let ¥={z; |3|<<1} be a parametric disc about 2. Assume that ¥ does not meet the
support of . Set
@) =ger [ Gliefri) L,

12i=1

We call y*(a*) the Robin’s constant of R; at a*. We have a variational formula for the

Robin’s constant. Note that

CLD=5 [ GG,

Corollary.

Gror=L [ Grou o s

|ll=1

6. The variational formula for the imaginary part of a Ax-behavior.

Let = be a meromorphic differential with a A;-behavior and i: denote a meromorphic
differential with a A:-behavior whose singularities are the same as those of #f.. Note
that ;[:, is not always unique for .. Let Ay=Iy1*47I:(=iA:). Then we have

Lemma 7. Thre —Z'J, is @ meromorphic differential with a Ay-behavior whose singu-
larities are the same as those of .

Proposition 5. Let it ,=ap. .. Under the similar conditions as in Proposition 3,

we have

2 m (Purefiri(p)— Watof1(g))
= [ P (B e fimr Sgte, e,

2 d-
37 Im g Pt (p)

n! .

=W/_A (Pet)eofi W(PL W) fi? ’a%y(z, A2 dzdz.
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Proof. By lemma 7 and Proposition 3, we have

2 Im (Parefi(p)—Wilofii(g))

L Re(Byofir (P —Fyofig) =)

] ~ a
=i [ Bef (P Ocefi ggute, DL dads

L[ @0t 1 (=i et pnte, Dt dada

Tdm

] y d
=1 | [ FDefim P oS gyula, He2 dadz.

Similarly we have the second equation.

We have from Propositions 3 and 5,
Proposition 6. Under the similar conditions as in Proposition 3,

S —Wilofi ()
i [ PP e s, Dt dadl,

d d°
5% da PSfHD)

. . 1 s .
In particular, if we remark that KX*=-—(¥*:,+7¥%1,) is a Bergmann kernel, we
p b 47-‘- ) ) g
can get the variational formulas for Bergmann kernels.

Corollary.
d
2K of U p)— K ofs “N(g))
. - a
=i [ B Oeofim (P g1 o)esfi™ Syl a2 dadi,

d dr
5% K S (D)

I, 3 d

i [ [ KOeofr (WP Yoo g, Ot dads,
Similarly we have
Proposttion 7.

a

27 TS = S )

i [ B ot 1P e fi e, DL dadz

=i R 5 )¢ 5,0 £,0/C%/¢ a[l"’ ? 5 ’

a dr
5 q TS HD)
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!, . d
=t [ (o (W B oS sl Dl dedz

If Me=Ist* A.=I:+:I. We have A.=A, and $:=sf.. Hence the right hand
sides in equalities of Proposition 7 are zero. This shows the following®,®.

Corollary. Let As=il.. Then the gquantities Witofy Y p)—W¥itofi~Yg) and %
Witofi=Y( p) are holomorphic with respect to t.
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