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Abstract

We introduced in our previous work behavior spaces for the purpose of a formulation of the
Riemann-Roch theorem and Abel’s theorem on open Riemann surfaces. The existence of behavior
spaces on arbitrary Riemann surfaces was shown by using Zorn’s Lemma. But behavior spaces
are not very clear. So as to throw light on it we shall give concretely some behavior spaces on finite
bordered Riemann surfaces. If we use the specific kind of behavior space, our formulation of the
theories is regarded as an obedient generalization of classical theories on compact surfaces. We
shall give an example and show that meromorphic functions which is stated in our Riemann-Roch
theorem are not always trivial on a surface with infinite genus and a large boundary. We shall
give meromorphic functions on finite bordered Riemann surfaces whose real and imaginary parts
have a certain I'j-behavior. This was unexpected on Riemann surfaces with large boundaries.

1. Introduction

The classical Riemann-Roch theorem and Abel’s theorem on compact Riemann
surfaces have been generalized to open Riemann surfaces. A type of similar generalization
is formulated on complex vector spaces as those given by L. Ahlforsz:® B. Royden!D,
B. Rodin!®, Y. Sainouchi!® and O. Watanabe!®. But, as was pointed out by R. Accola,
it seems to be meaningful for Riemann surfaces of class Ogp only. The other type is con-
sidered on real vector spaces as those given by Y. Kusunoki® firstly, M. Yoshidal®, M.
" Shiba1%:14 and O. Watanabe!® afterward. This is valid for general Riemann surfaces
and the grounds might become complex vector spaces if the concerned surfaces have certain
small boundaries. These generalizations are formulated by the method of behavior spaces
on the real number field and are concerned with meromorphic functions with a I';-behavior
introduced by M. Yoshida. It has seemed that a meromorphic function whose real and
imaginary parts have a I'»-behavior is trivial if the concerned surface is not of class Oxp.
Recently, by the method of behavior spaces on the complex number field, we formulated
these theories on complex vector spaces which is not always trivial for surfaces even with
large boundaries.

In this paper we shall investigate some kinds of behavior spaces concretely on finite

bordered Riemann surfaces, and applying them we shall discuss Weierstrass points and
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Jacobi’s inversion problem on finite bordered Riemann surfaces from our view point.
By considering a specific kind of behavior space we know that our formulation is regarded
as an obedient generalization of classical theories on compact Riemann surfaces. We
shall show by examples that a meromorphic function which is given by our Riemann-Roch
theorem is not trivial on a surface with infinite genus and a large boundary, and that
meromorphic differentials with an infinite number of non-vanishing periods may appear
in our Abel’s theorem. We can give some I';-behaviors on finite bordered Riemann sur-
faces such that meromorphic functions whose real and imaginary parts have a I';-behavior

are not always trivial on these surfaces with large boundaries.

2. Behavior spaces

21 X-behavior

Let R be a Riemann surface and I'=I(Z) be the Hilbert space of square integrable
complex differentials on & with the usual inner product defined by

(w1, wz)z//;cm/\az*:z'/xe(aldz-l-hZz)dde,

where wi;=aidz+4:dz for a local parameter z. We denote by & the complex conjugate of
w and by w* the conjugate differential of w. We shall make use of some kind of subspaces
of I As for the notation of subspaces we follow Ahlfors-Sario®, for example, I's, I'ks.,
I';, denote the spaces of harmonic, harmonic semiexact differentials and the space of
differentials of the Dirichlet potential respectively. Let &= {4}, B;} be a canonical homo-
logy basis of R modulo dividing cycles and {G.} be a canonical regular exhaustion to
which F is associated. We will take up the following type of subspaces.

Definition. A subspace I'y of I'y is called a behavior space if I's satisfies the following,

(D) I:Clhse,
(i) I=r.=I""
(1) there exists a system of real numbers {a;, b;} (aj|+|8;|#0) such that

a,-/ .(.L):éj/ w  for any wE€IY.
We denote " &
Ii={a; wcll},
I*={w*; welly},
It ={wETl%; (w, 0)=0 for any o EI%}.
Well known subspaces do not become behavior spaces, but we have shown in® that

Proposition 1.  On an arbitrary Riemann surface there exists a behavior space.

Now let {3} (Vi={z:; |2i|<<1} be a family of parametric discs on & such that 7;N
Vj=¢ for 7% and { ¥V} does not accumulate in £. We put G= U7 Assume that GN
0Gr=¢ for any n. For a behavior space we set X=1":+1I,. z

Definition. A meromorphic differential | has an X-behavior if there exist a Gr and
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an w in X suck that p=w on R—G—G,. We saw in® that there exist the following me-
romorphic differentials with an X-behavior:
$a; ; Ya;is a holomorphic differential with an X-behavior such that
a;Ai¢A;=5iﬁi¢A5—b;8;1 (8ii=1, 8:j=0 for z+5),
Y5, ; ¥s; is a holomorphic differential with an X-behavior such that
dx'/;ilﬁgj:bi‘/g“',baj_ﬂiaij,
p,n ; Yp,n is a meromorphic differential with an X-behavior such that ¢, has the
smgulanty d - only at p and a,/ pn=0; / Yo (m21),
Ype; Preisa meromorphlc differential with an X~- behav1or such that ¢, , has residue
1 at p and —1 at ¢, regular analytic elsewhere and a;[qi¢p,q=b;ﬁi¢p,q.
These differentials will play a fundamental role in the Riemann-Roch theorem and Abel’s

theorem
2:2 Riemann-Rock theorem

Let 8 be a finite or infinite divisor on £ whose support is contained in G and whose
restriction to each V; is a finite divisor. Write as §=38,/8,, where 8,=p1#1p3#2---p,#--- and
8,=g1"1g2"+-gm"m--- are disjoint integral divisors. We consider the following linear spaces
over the complex number field C:

S(xX: 15 { f; (i) f is a single-valued meromorphic function on &, (ii) df has an X }
(X5 18) = behavior, (iii) the divisor of £ is a multiple of 1/8.
f; (1) fis a (multi-valued) meromorphic function on £ such that a; / df=
M(X; 1/89> = Aj
bi A df, (ii) df has an X-behavior, (iii) the divisor of #is a multiple of 1/8,
DX 8 {zﬁ ; (1) Y is a meromorphic differential with an X-behavior, (ii) the divisor o?
R i is a multiple of 8 and ¢ has a finite number of poles.

Y ; (1) ¥ is a meromorphic differential with an X-behavior, (ii) the divisor of
D5 1/o0 2{  is a multiple of 1/8, and ¢ has a finite number of poles. }
Here, in the case that §,#1 we identify two elements /1 and fz of M(X; 1/8,) if and only
if /1—f2 is a constant.
Lemma 1. Let fFEM(X; 1/8;) and yED(X; 1/8;). Then
lim [ fp=0 andlim /. o SI=0.

Proof. There exist a region G and differentials w and o in X such that df=w and
=0 on R—Gn—CG. Then we have

0=(w, a'*)—llm (w, 7%)g,

i = wet B, oo o
=lim — [,

where w= / won R—{4;, B;}. Similarly we have
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0=(w, o*)=—lim S

n>00 aG,.

Lemma 2. If fEM(X; 1/8;) is holomorphic in R, then Af is identically zero.
Since df belongs to D(X’; 1/8,), it follows that

@7, df)=(df, 7df*)=—ilim A _ f&F=0.

Lemma 3. (¢f1®) Let K be a freld and YV and Z be two linear spaces over K.  Sup-
pose that k is a bilinear form defined on the product space Y X Z, and that Yo (resp. Zo) is
the left (resp. right) kernel of %, that is

Yo={y€Y,; 2(y, 2)=0 for all 2€ Z},
Zv={2E2Z; /Ky, 2)=0 for allyE Y}.

then dim ¥/ Yo=dim Z/Z,, where both left and right sides may be infinite. If at least one
of the quotient spaces ¥/ Yo or Z/Z, is finite dimensional, we have an isomorphism ¥/ ¥y~
Z[|Zo.

Proposition 2. (Riemann-Rock theorem)

M(X; 1/8,) __

. D(X; 1/8,)
S5 1) U™ Dk s

dim DX, 5)

where boih left and right sides may be infinite.
If 8, is a finite divisor,

dim S(X; 1/8)=[ord 8,41—min (ord §,, 1)] —dim ———Dé‘ifxl g) '

Proof. We consider a bilinear form defined on the product space M(X; 1/8,) X D(X;
1/84)
A f, Y)=2n7 lim ? Res fi.
n>00 Gp pj
Since ¢ is regular at each p;, additive constants (including periods) of f have no effect for
the residue of f£if at p;. So we regard f as a function on R'=R— {4, B;}. For any f

EM(X; 1/8;) and any ¢ € D(X; 1/8,), there exist a region G and differentials w and o
in X such that df=w and =0 on R—Gu—G. Then

A(f, f)=2m7 lim %‘, Res fif
nyo0 Gy Py
=27 lim { 33 Res fb— X3 Res fi}

ny»0 G, =% Gp 4

=1"i.>12{ 36‘,;fl/1_ Gzn ,:,[‘hdfr/Bs‘,b_ Bidf,/;ilﬁ:'}—zwz'z ]%?Sfll‘

=_sz[‘/A‘_df/Biz/:—A’_df/Aizﬁ]—Zm'E Res f}.

Hence 4(f, ) has a finite complex value and % is a well defined bilinear form. If /belongs
to S(X; 1/8), for any ¢ € D(X, 1/8,) /b has poles only at {p;}. We have
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K== [ & 4= [ [ 4]0

The function f belongs to the left kernel of Z and S(X; 1/8) is contained in the left kernel of
4. Conversely if # belongs to the left kernel of 4,

0—it bap= [, & [, bas— [, & [, toas

It follows that /; df= /:4 “df=0for any 7, and fis a single valued meromporphic function
J 7

in M (X; 1/8p).

If §=3,, then f belongs to S(X; 1/8). If 68, then

0=A(f, $avqi) =—2mi (Res f YaraitRes fifo,0)=2mi (f(g:)—/(g1))-

Hence f(¢i)=f(g1) for any 7. Further, since
0=A(f, qix)=—2mi Res fifg; s for £<v;—1,
'H

the function f/—#(g1) has at least vi-ple zeros at ¢i. Above all we know that S(X; 1/8) is
the left kernel of 4. Next let /€ M(X; 1/8;) and $ED(X;8). Then fif is regular analy-
tic at {#;}. Hence 4(f, $)=0. Multi-valued meromorphic functions ¥,;s= / Yo (1=
A=<pu;) belong to M(X; 1/8;,). When ) belongs to the right kernel of %, we have

Ozﬁ(ll}pj'k’ ¢)=27TZ' Rpes q]pj,k Sb.
j

Therefore ¢ has at least pj-ple zeros at ;. Thus D(X; 8) is the right kernel of 4. By
Lemma. 3 it follows that
. M(X;1/8;) .. D(X; 1/8,)
dim SXIP) =dim DK 5
If 8, is a finite divisor pi#1pe¥z.-pu#n, it is easily seen that {¥p;,s} 1<j<n,1<k<s; Span M(X;
1/8;) (8,#1), and a constant 1 and {¢;; ) 1<j<n,1<k<s; make a basis of M(X; 1/8,) (8,=1).
We find that dim M(X; 1/8,)=ord 8,+1—min (ord 8, 1). We can obtain the conclusion:

. . . D(X;1/8
dim S(X; 1/8)=[ord 8,41—min (ord §,, 1)] —dim ﬁ’/ﬁf)—

We remark that D(X; 1) is spanned by {a;}s;+0 and {ths;}s;-0, and D(X; 1/8,) is
spanned by {l/’Aj} bj#0, {Sij} 65=0, {thai b} 1<hgvi-1and {fgi,0 ) 2gicm if §;,=g1"1g2*-+-gm*m. Thus
when the genus g of & is finite and 8, is a finite divisor, we have

g if §,=1

dim D(X; 1/8)= gtord 8,—1 if §,#1.

Corollary 2.1. Let R be a Riemann surface with a finite genus g and 8=38,[8, is a
JSinite divisor. Then it holds that

dim S(X; 1/8)=dim D(X; 8)-+ord —g+1.
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2.3 Abel’s theovem
Let 8, and 6, be finite or infinite divisors on R whose supports are disjointed from
each other and are contained in U V1,2 (Vi,1,2={2:;|2:i|<1/2)}. Suppose that the re-

strictions to each V71,2 of 8;, §; have the same finite degree. Write them as pi 1pi 2+
Diny gi,1gi2 gin,Where g ; (vesp. ¢i,j) may coincide with z: s (resp. ¢gis) for j#4.  Further

we assume that there exists a closed C!-differential 8 in £— U (pi,»Ugi,;) such that
i 5k

&) 9={d[ Zjl log (zi—pi,5)—log (zi—gi,))] on Vii,e
0 on #—G
(i) (0, Oe-yvi12<oo.
Under these circumstances we can formulate Abel’s theorem.
Proposition 3. Abel's theorem

The following two conditions are equivalent.
(1) There exists a single-valued meromorphic function f suckh that

(1) the divisor of f s 8, (ii) d log f kas an X-behavior.

(iii) a,-/;“d argf=5;/md arg f for any 1.
(2) Let C be a chatn which consists of chains C1 in a Gu and Cz itn G N (R—Gm) and let
A= 2. (pr.i—¢5i), 0C2= 3 (P4,i—¢i.4), then

/; Ya; and /{; ys; are all integers.

Proof. Let '=R—{dA;, Bj}, and G/'=G» N K'. We put Wa,= / Ya; and ¥, = /

Yp;in R'. If fis a meromorphic function in (1), then

/;v,b,q,-:lim > Res Wy4;d log f

ns0 Gy

i o s B o s f 2087

:__2::—7_ {/:a;lﬁAj/;iid argf—/;‘_l,lm,-./“d argf}
=_21?,/;“~d arg f.

Similary L P j=_21;‘ /; jd arg /. Hence these are all'integers. Conversely we suppose
that (2) is filled. Now remark that there exists a closed differential § such that §=6* on
R—G'U (UViaye). Let w (resp. 7) be the orthogonal projection to X=1I"+4TI, (resp.
I.4Tp*) of @-+8*. Then ¢'=0—w=7—0F* is closed and coclosed. Hence ¢’ is harmonic
in R—{p:ij, gi,}. Let ¢=(¢'+ip'*)/2. Then ¢ coincides with (—w+7sr*)/2El+ T,
on #—G. Thus ¢ is a meromorphic differential with X-behavior which satisfies a; [4 i¢=

bi /; ¢ for any 7. So we can obtain
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1 i B 1 B
2 Aj¢—ln£GZ"Res Wa; $= [ ha; and — /;qu—/;x,ij.

It follows that f{ p)=exp / pqS is a single-valued meromorphic function and has the re-

quired properties. The function in (1) is uniquely determined except for multiplicative

constants (cf. Lemma 2).

3. The case of finite bordered Riemann surfaces

3.1 ME-behavior

Let R be a finite bordered Riemann surface with a finite genus g whose boundary o
consists of a finite number of compact analytic curves {Ci}. We denote by V= {1‘7‘J2<lz;|
<1} ring domains each of whose boundary {zi; [2i|=1} is Ci. Write z;=#; (cos 6,47 sin
#;). Then a harmonic differential can be written as

w=>Zo' d log 7i+do' db;
+ 2 {¢s’ d(7i" cos #bi+d,' d(r:* sin #n8:) }

in each V;. We shall denote ¢’ and 2. for w by ¢.*(w) and d»’(w). Let

I's= {w; w be a harmonic differential in I'; such that
(i) do*(w)=0 for any 7,

(i) dni(w)=d", (w) for any m and ¢,

(iii) a;Liw=&;A;w for any 7,},
where {ai, 4;} is a real number system such that |a:|4|4:[#0. Now we show that I'z is a
behavior space. By the condition (i) I'r is a subspace of I'ss.. For a differential w is I's
the integral o= / w in R'=R—{A4;, Bj} can be regarded as a cosine function with respect
to #; on each boundary component Cj, because = is a harmonic function with a finite
Dirichlet integral in each 7; and w satisfies the condition (ii). Let w and ¢ belong to ['s.

Then we have

(w, "*)=_ﬁgw5+ z [ﬂ;wﬁja—/ﬂfwﬂia]

=lim — {/Izil:,i(z-o‘(w) log 7i+ %} en'(w) 7" cos nb;

ri>1 i

+ 2 dni(w) 7™ sin mb:) @o'(o) d (log 7)+ 2 277(0) d (r:7 cos 765)
-~ J
+ T AT d (it sin 269))

-3 [ /. ’_{ 5y £ cyi(w) Z(0) [cos (n4-#) 0 + cos (n—4) 6]

n.k

+ 2‘%4’,,,"((») ¢;*(o) [cos (7n+7) 0: — cos (m—j) 0.']}d9;}

mry
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=—m 5 | ; (nen’(w) dn’(o) —nea’(w) 4%, (0))

+ 3 (jdLl;(w) ¢ii(0)—jd;i(w) ¢7(0))}
=0.

Hence [k is orthogonal to I'g*. If a differential w in I's, satisfies that a; /:4 w=b; / w for
any 7, then w belongs to I's. Hence I''wCI's and 'y *C I'h,e.  Further there exists non-

zerowEFhaﬂ%,, suchthata,/ w= é,/ cuand/ /w 0 for 7+#/. For ceI'st”

o=y oo i

and we obtain «; /A o=0b; A o. Now the space I's** contains I'z and has an orthogonal
decomposition '™ —I’g+I’E“ﬂI’g . Let €™ NIst. If o=ds belongs to I'i,

we have
(o, w*)=—ARsa
=—3 /C'(Zo"(a) log 7i+ 23 ¢a'(0) #i* cos #0i+ 3 dw'(c) 7™ sin mb;)
(Zo*(w) dlog 7i+ X ¢;'(w) d (7: cos j6:)+ 2/: dif(w) d (7 sin 26;))
J
=— c-{ P icn"(a) dy*(w) [cos (n+4) 0:+cos (n—£~) 0i]
+ 2 dm (o) ¢j*(w) [cos (m-7) 8i—cos (m—y) 6; ]}dﬁ
=—r 3 { R ACIENORIC)
+ 3 4@ [0~}
We can choose an exact harmonic differential o=ds such that
@) dij(o')=a’,-"(a) for any 7 and 7,
(i) ¢ 4(0)=—csi(0) for any pair (7, £)#(zo, 4-40),
(i) 2%, (@) Fci (@) =2} (0).
Since ds belongs to I's, we obtain d}° (w)=0. Hence Zi"(w)=0 for any 7and 4. Similarly

we know that cx'(w)=0 for any 7 and £ Thus w=0 and I's=I"z"*. More generally we

obtain the following in the same way.
Proposition 4. Let M; be subsets of the natural numbers and

I've={w; w is a harmonic semiexact differential such that
() dii(w)=d’,(w) for any pair (z, n), ne M;,

(i) eni(w)=—c", (w) for any pair (i, m), mEM;,
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(iii) a,‘/;jw:éj'/;jw Jor any j.}.
Then the orthogonal complement of I'me in I'v is the space I've* and Iye is a behavior

Space.
Remark. For an integral w= / w of a differential w in I'yz the boundary function

has a Fourier expansion of the following type

w(@)= 3 cn’ cos mbi+ Y di' sin 28i+4co’ on Ci.

meEM; neM;

Definition. A meromorphic function w is said fo have an ME-behavior if dw is
equal to a differential in g1 e in some neighbourkood of the ideal boundary.
It can be said that a meromorphic function = has an M Z-behavior if and only if 2 has a
finite Dirichlet integral in a neighbourhood of the ideal boundary and has a Fourier ex-
pansion of the above type on the boundary. In fact let dew be written as w+df with
w € I'ye and df € I, in a neighbourhood of the boundary d&. Then  has a Fourier
expansion of the above type and f may vanish on 2. Conversely we suppose that zv has a
finite Dirichlet integral and has a Fourier expansion of the above type. There is a C*
function @ such that w=w in each Vi Let dw=dwi+dfs with dew: € I'n, and dfa
€ I, and ’

wi(z:) =Zo’ log 7i+ 2 cn' 71" cos mbi+ 3 da® 7" sin zb;
in each 7:. Then the Fourier expansion of z; on C; is
w1(8)= 2 (em'+c',,) cos mbi+ g (dsi—d',) sin nfi4-co'.
m>0 n>0

Since f1 is constant on &, we can regard that the Fourier expansion of 1 on C; coincides
with that of zw. Hence emi=—c', for mEM; and dii=d’, for ng¢ M;. Thus dwiEyx
and 2 has an A/ E-behavior. Next let a meromorphic differential ¢=ds satisfy that o=
o1+df with o1E'ye and dfET, in a neighbourhood of the ideal boundary. Since o=

Zo*, we have
eni(o)=—idwi(0)=—c’ , (6)=id’, (o) for mEM;,
dni(0) =icsi(0) =d 2, (0)=ici(o) for net M.
It follows that
)= 3 enil0) eim 1[4 Ty ni(0) (o1 s e
in each 7;. Note that s(z;) is defined in {z;; p<<|zi|<<1/p} and converges in the sense of

the Dirichlet norm. Thus we know that s is analytic on each boundary C; with respect

to z;. As a consequence of this result,
Proposition 5. A meromorphic function with an ME-behavior is bounded in a
neighbourkood of the ideal boundary, and further it is represented as follows:
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S 2¢mt cos mbi+ 2 2d.F sin ni+c

meM; neM;
on each Ci.
Now Z-behavior is the case that all M7’s are empty. As to Z-behavior we have
Proposition 6. Let f be a meromorphic function with E-behavior and have n poles.
If a complex number a does not belong to the boundary clustér set of f ( f(OR)), the number of
a points of fis n. The function f is a conformal mapping of R onto the covering surfaces

of the complex plane whick is n sheeted and have a finite number of slits represented as

S em' cos ml;  (0<0;<27m) on Ci.

Proof. Since we can regard f(z:)=/(1/z:), we have 1)(f(z:) —a)=1[f(1/2:)—a). There-
fore the function 1/(f—a) is also a meromorphic function with Z-behavior. It follows

from Lemma 1 that

#(f, a)—n( f, co)=lim — df o,

nsoo 212 J3Gn f—a.

where #( f, a) is the number of a points and #(f, 0)=7. Thus by use of Proposition 5 we
obtain the statement.

Corollary 6.1 If the genus g of R is positive, then dim D(E; p)< g—1 for any point
PER.

Proof. If dim D(Z; po)=g, by Corollary 2.1 there exists a meromorphic function
FES(E; 1/po). The Riemann surface & is conformal to a planar region by . Thisis a
contradiction.

Corollary 6.2 There exists a set of distinct points pi1, pa,, pg such that dim D(E;
DP1papg)=0.

Proof. Note that (i) dim D(Z; p1)=g—1, (ii) dim D(Z; p1pa---ps) =g—s, (iii) if a
differential in D(Z; p1p2---ps) does not vanish at a point ps41, then dim D(Z; p1p2++ps ps+1)
<dim D(Z&; pipe-ps)-

Lemma 4 Let 8, 8 and 8" be finite divisors. Let f, f1 and w belong to S(E; §),
S(Z;8") and D(E;8") respectively. Then f f1 belongs to S(£;88") and fw belongs to D(E;
88'").

Proof. Since f and f1 is bounded in Vi, f/1 and fw have finite Dirichlet integrals in
Vi. By direct calculation they have Fourier expansions on each C: which give Z-behaviors.

Proposition 7. Let 8 be a finite divisor. If a differential w belongs to D(E; 8), then
ord (w)<29—2, where (w) is the divisor of w.

Proof. Let (w)=8¢" and dim D(£; 8')=m, dim D(Z; 8" )=n. If fES(£; 1/8"),
then fw belongs to D(&;8""). It follows that dim S(£; 1/6")<# and similarly dim S(Z;
1/8"Y<m. Thus by Corollary 2.1, m+n=n+m—+ord 8'+ord 8’’—29+2. This proves
the statement.

In the same way as in Lemma 4 we have:

Lemmab. Let M; be empty or all natural integers. Let s, s1 and o belong to S(ME;
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8), S(IME, &) and D(ME; 8") respectively. Then ssi belongs to S(E; 88') and so belongs
to D(E; 88"). If a meromorphic function f in S(ME; 8) has n poles, then the number of
a points for [? is 2n except for a Ef(OR) N —F(OR).

3.2 X-Weierstrass points

Let the genus of Riemann surface R be a finite number g. Corresponding to classical
Weierstrass points we define the following. '

Definition. A point pER is called an X-Weierstrass point if there exists a mero-
morphic function with an X-behavior whick has a pole of ovder n(< g) only atp. A positive
integer m is called an X-gap value at p if no mervomorphic function with an X-behavior
has a pole of the order m only at p.

Lemma 6. There exists a family of linearly independent holomorphic differentials
with an X-behavior 1, Pa, -+, Py such that the order pi of zero of i at p satisfies

0 pi<<ppa<lor-<py.

The numbers pr1-+1, 241, -+, ug-+1 are X-gap values at p.

Proof. If ¢ and ¢ has the same order of zero at p, then there exist complex numbers
@ and 4 such that 1 and ;" =ayn +&p2 have different orders of zero at p and i, 2, -, ¢,
are linearly independent. This proves the first assertion. Suppose that f is a meromorphic
function with an X-behavior which has a pole of order u;-+1 only at . Then by Lemma 2

we have

Rpesfl,ll;=}’lg‘} '/;an‘l’i:(].

This is a contradiction. Hence p;+1 is an X-gap value.
Remark. From Corollary 2.1 we know that the number of X-gap values at every

point pis g. Hence pui+1, pa+1, -+, uo+1 are all X-gap values at p.
Now we denote ; of this Lemma as ¢i=/i(z) dz and consider the Wronskian

W(z)=| f1(2) - fo(2)
Sl - S @)

fl(y—l;(z) ...fg(y—l)(z) .

The W/(z) has a Taylor expansion and the first term is

(—1)0=18/2 IT (p;—pp) 2T HiTH— A2+t
i<k

We can assert the following.
Proposition 8. X-Weierstrass points coincide with the zeros of the Wronskian W(z)
and they are at most a countable number of points which have no accumulating point in R.
Corollary 8.1 (2) ME--Weierstrass points are at most finite. (¢4) If m s an E-gap

value, then m s less than 29.
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Proof. By Proposition 5 #(2) is analytic on the boundary. This proves (i). As to
(if) we note Proposition 7 and dim D(X; p29-1)=0.

Remark. The zeros of Wronskian are independent on the choice of the linearly inde-
pendent holomorphic differentials with an X-behavior. Next as for an Z-behavior, if the
degree of W(z) dz9¢+1/2 is /V, then the number of £ Weierstrass points is less than / and
is larger than 2/V/g(g—1). The proof is analogous to the classical Hurwitz theorem.

3.3 Jacodi’s inversion problem

Here we can formulate Jacobi’s inversion problem on a finite bordered Riemann
surface &£ with genus g. Let ¢ be the holomorphic differential with an X-behavior. For

complex numbers ¢; and e;" we denote e;=e¢;" mod P(:) if there exist integers »; and ;'

’ g g ’
such that e; =J§,1m,' /;jzﬁi—{—jglm,' /;jl/'i—l—ei.
Peroposition 9.  Let 1, o, -+, g be linearly independent holomorphic differentials
with an E-behavior. For a point po in R and complex numbers e, ez, -+, ey, there exist

points p1, pa, -+, pg on R such that
g p’- .
> /; Yi=ei mod P(P;) for 7=1, -+, g.
j=1J %0

Proof. By Corollary 6.2 there exists a set of distinct points ¢, -+, ¢, (E &) such that
dim D(£; ¢g1g2--¢,)=0. Take disjoint parametric discs /= {zi;|2:/<<1} about ¢; and
write ;=f;(z;) dzi on V;. Since

Silgy) - falge) [#0

Solgn) - folgo)

we can assume that

] 3 ﬁ] oes g )’J
w(prpn 00 =(3 [ 3 [P €C0

is a homeomorphism from V'=PV1X V2 X+ X ¥, into a neighbourhood U in C?, where
integral / pjx,lr; is taken in F;. There exist a positive integer » and points {p;E V} ;
'] :
such that (ei/#n, -+, eg/n)E U=u(V) and i /ﬁjzﬁ;:e;/n for7=1, ---, g. Let 8 be a divisor
j=1J4j
207 (ﬁlﬁz'-ﬁ,)"/(glgz"-yg)”. By Corollary 2.1
dim S(Z;1/8)=dim D(£; §)+1=1,
and there exists a non constant meromorphic function f in S(&; 1/8). Since (f)8 is an
integral divisor, there exist points p1, «--, p, (#= g) in & such that (f/)=p1p2:-p, (71¢2...¢0)"/

po? (p1p2-p,)". By Proposition 6 for any ¢>>0 there exists a complex number a&f(3R)
such that |a|<e and as for the divisor of f—a
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(F=)=pu()pela)240) 3 2 qui@)lpat (i7"

Since f—a#0 on dR and (f—a) (¢*?))=(f—a) (¢~*%j) on C;, the function log (f—a) is
assumed to have single values in a neighbourhood of each boundary component. We
can regard log ( f—a) (z;)=log (f—a) (1/z;) and know that d log ( f—a) has £-behavior.
1t follows that

?j(x) qkj( ) P]( )

bty %

= k=1 j=1

= 2 Res ¥; d log (f—a)
= lim { / ¥, d log (f—a)

277 n>co

~ [ f, dr08 U [ i [, alog (o]}
=_—‘2[/ ¢«/ darg (f—a)— / !/1/ darg(f—a)]

We can assume that (pi(a), p2(a), -+, p¢(a)) converges to (g1, -+, py) on RXRX-+XR and

B(a) converges to 0. Hence we have

b= 2 [V it 3 [ @)

g b,
% [igi=ei mod P for i=1, -, g.
j=1J ko

Remark. A meromorphic differential with £-behavior on & can be regarded as a
meromorphic differential on a compact Riemann surface £ which is obtained by sewing
e’ with ¢=%j on each C; of 2. Hence the assertions for Z-behavior correspond to clas-
sical theories on compact Riemann surfaces. It seems that Propositions 2 and 3 are obedi-
ent generalizations of classical Riemann-Roch and Abel’s theories. For the sake of
investigation of open Riemann surfaces, it is important to show the existence of. behavior

spaces as Z-behavior spaces on arbitrary Riemann surfaces.

4. Examples

Example I. Let D be a unit disc {z;]z|<<1} and I'r be the Z£-behavior space defined
by the variable z. A meromorphic function f(z)=z+1/z has an £-behavior and has a
simple pole at zero. This is a well known slit mapping. Each slit mapping on a finite
bordered Riemann surface whose slits are analytic curves has an £ “behavior if the variables
which define I'r are chosen suitably.

Example 2. Let {Di}1<ice be unit discs and xa, ¥» (<1) be increasing sequences
of real positive numbers which converge to 1. Now slits [ —x2nt+1, —X24] and [x2s, X2at1]
in Ds, and Daznq1 are sewn into the upper edges of Dz, with the lower edges of Daay1 and
the lower edges of Dz, with the upper edges of Dsnq1. Similarly [—zyes, —#y2s—1] and
[£y2n—1, Zy2s] are sewn between Dz,_; and Ds,. By these sewings of {D;} we obtain a
covering surface £ on {z; 2<<1}. Then we can define a behavior space I'vz on & by the
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variable z in the same way as in a finite bordered Riemann surface. We can show that
(w, a*)=3 —’/w.wa for w=dw, cE'ye,
H
(o, @*)=2] —AD‘JG for o=dsE e, and w&E Myz>".
]

We can obtain FME:FMEJ-*z Twe. Let Vi={s;|2z|<7i} be a disc in D; which does not
meet the branch points. Let f{(Z)=z+1/z on R, where z is the natural projection of 2.
The £(3) is a meromorphic function with an Z-behavior which has infinite number of poles
if "V_‘, area of C—f(Vi)<<oco (cf. Proposition 2). For a cycle y, the winding number of f(y)

for ag[—1, 1] is the period of —zd log ( f—a) with respect to y. If we choose a suitable
homology basis and {ai, 4i}, then d log (f—a) becomes a meromorphic differential with

an Z-behavior which has an infinite number of non-vanishing periods (cf. Proposition 3).

5. Remark

M. Yoshida defined rI'y>-behavior as follows:
A single-valued real harmonic function # defined in a neighbourhood of the ideal boundary
of the Riemann surface & has zI'»-behavior if d« and d«* admit the following representa-
tions in a neighbourhood of the ideal boundary; '

(i) du=dw+dfe with duexErlrand dfeET,,

(i) du*=wrtwo with w:Erly" and woE Iy,
where rIsL is the orthogonal complement of I in the real Hilbert space zI’s which con-
sists of real harmonic differentials in I's. Now let f be a single valued-meromorphic fun-
ction on & whose differential df is distinguished®. Then the real and imaginary parts of
f have rlym-behaviors. The f is not always trivial if £EOxp—O¢ but it reduces to a
constant if £e& Okp. Similarly it was expected that a meromorphic function whose real
and imaginary parts have gl:-behavior reduces to a constant if & Okp. We have a
counter example. That is to say, S(#/£; 1/8) contains a non-constant meromorphic
function if the degree of 8 is large enough and a function in S(#£; 1/8) has I'yz Nl ke-
behavior. At last we note that (i) if I’z=1’1“=1—’,, then I'ni=IyNrw+7(I 2N rH) and
rDv=IaNelw+12*Nels, (1) IueNelke consists of real valued harmonic functions {f}

each of which has a representation:

f(O)= 2 ¢w’ cos mbi+ T &y’ sin n8i+4co' on each Ci.

meEM; neM;
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