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Abstract—This correspondence points out that stability of delta-oper-
ator-induced real polynomials is equivalent to a shifted Hurwitz stability
of their reciprocal counterparts. This fact reveals a simple and clear link
between the delta-domain stability and Hurwitz stability for real polyno-
mials.

Index Terms—Delta-operator, Hurwitz stability, real polynomials, sta-
bility property.

1. INTRODUCTION

It is well known that the delta-operator mediates between the dif-
ferential and difference operators and unifies two parallel control (or
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signal processing) theories (continuous-time theory and sampled-data
one) by taking the sampling interval as a parameter [1]. So far as sta-
bility of systems induced by the delta-operator is concerned, several
test methods have been thus far proposed and discussed for polyno-
mials or state-space models [1]-[6].

In general, as the sampling interval decreases and comes close to
zero, the delta-domain stability approaches Hurwitz stability and some
of the aforementioned articles touch on this subject using their own al-
gorithms. In the authors’ view, however, the connection between the
two stability concepts is by no means fully clear and smooth. This
correspondence contributes to clarifying this *“junction” problem. It
is pointed out that the delta-domain stability of real polynomials is
nothing other than a shifted Hurwitz property of their reciprocal coun-
terparts. This fact reveals a link between the two stabilities in a simple,
clear, and general manner.

1. A LINK BETWEEN THE DELTA-DOMAIN STABILITY
AND HURWITZ STABILITY

Delta-operator is defined by & = (¢ — 1)/T with ¢ being the shift
operator and T the sampling interval. After [1], we employ ~ to denote
the frequency domain variable corresponding to é and consider nth
degree real polynomials,

flx)=ay" +a17" ' +--+an, a0 >0. )

It is known that systems with f(7) as the characteristic polynomials
are stable (in the 6 domain), if and only if the zeros of f(+) all satisfy
v € D where

1\* 1
>+y2<—

D= :=:l‘+jy.:rE§R,jy€8(g‘+T 3

2)

Here, j stands for the imaginary unit. In what follows, we say f(v)
is D-stable, if the above condition is fulfilled by its zeros. We assume
the D-stability of (1), which leadstoa; > 0,7 = 1, ..., n, because
D lies in the Hurwitz region (i.e., open left half complex plane). Now
we observe that D is the disk region in the complex plane centered at
(—1/T. jO) with radius 1/T. As T tends to 0, the disk apparently ex-
pands monotonically and finally covers the whole Hurwitz region. Ac-
cordingly, the same should occur in the polynomial coefficient space.
To imagine this, consider the D-stability region in the coefficient space
with T as a parameter. The region must continually expand ,as T de-
creases, and reach its limit, Hurwitz stability region in the coefficient
space. Our interest lies in what way this smooth transition in the coef-
ficient space can be generally realized and convinced.

The key to this problem is to introduce the following inverse of
D-stability region in the complex plane.

D_,:={z€C|l/: € D}. 3

Note that since any zero of (1) does not vanish, D, is well-defined
and z € Difandonly if 1/z € D_,. A little manipulation shows that
D_, is given by

, . T
D_1={:=1+_1y,:r€9?,_1y€8|1‘<—§}. (C))
With this inverse region, the main result can be stated as follows.

Theorem 1: A necessary and sufficient condition for f(7) to be
D-stable is that the polynomial g(s — T/2) is Hurwitz stable. Here,
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g(s) is the reciprocal polynomial of () givenby g(s) = s" f(1/s) =
n 8" 4 an_18" " 4+ - + ao.

Proof: Thisis animmediate consequence of the above observations.
See also [1, p. 135].

The significance of this theorem lies in that it gives a link between
D-stability and Hurwitz stability of real polynomials in a simple, clear
and general manner. We can realize at a glance the smooth, continual
expansion or transition in the general stability conditions from D-sta-
bility to Hurwitz one as T" tends to 0 without resorting to specific D-sta-
bility tests as attempted in [2] or [3]. It is interesting to note that the
limit of D-stability as T goes to O is not Hurwitz stability of f(+) it-
self, but of its reciprocal counterpart. However, both are, of course,
identical. We also note that the theorem can provide a useful viewpoint
inemploying any of conventional Hurwitz stability tests for D-stability
checking.

Finally, we consider an extension of the previous theorem to systems
formulated in the state-space. This may enable us to view the result in
a little wider perspective.

Let us consider a delta-operator-induced state-space model,

bx(t) = Az(t), Ae R, (5)

The characteristic polynomial of this system has the form of (1) with
ao = 1 and the matrix 4 is nonsingular if D-stability is assured. The
direct consequence of Theorem 1 for this system is the following state-
ment.

Theorem 2: System (5) is D-stable, if and only if the matrix 47" +
(T/2)1, where [ is the identity matrix, is Hurwitz stable.
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