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PAPER

Low Grazing Scattering from Sinusoidal Neumann Surface
with Finite Extent: Total Scattering Cross Section

Junichi NAKAYAMA†a) and Yasuhiko TAMURA†, Members

SUMMARY This paper deals with the scattering of a transverse mag-
netic (TM) plane wave from a perfectly conductive sinusoidal surface with
finite extent. By use of the undersampling approximation and a rectangular
pulse approximation, an asymptotic formula for the total scattering cross
section at a low grazing limit of incident angle is obtained explicitly under
conditions such that the surface is small in roughness and slope, and the
corrugation width is sufficiently large. The formula shows that the total
scattering cross section is proportional to the square root of the corrugation
width but does not depend on the surface period and surface roughness.
When the corrugation width is not large, however, the scattered wave can
be obtained by a single scattering approximation, which gives the total scat-
tering cross section proportional to the corrugation width and the Rayleigh
slope parameter. From the asymptotic formula and the single scattering so-
lution, a transition point is defined explicitly. By comparison with numer-
ical results, it is concluded that the asymptotic formula is fairly accurate
when the corrugation width is much larger than the transition point.
key words: scattering, finite periodic surface, TM wave, total scattering
cross section, low grazing angle of incidence

1. Introduction

This paper deals with the scattering of a TM plane wave
from a perfectly conductive sinusoidal surface with a finite
corrugation width W (See Fig. 1). We study the total scatter-
ing cross section at a low grazing limit of incidence (LGLI)
with θi → 0.

Low grazing angle scattering from a rough surface is
practically important in the sea observation by a ground
based high frequency (HF) radar [1]. However, the diffrac-
tion by a periodic surface often becomes singular at LGLI,
at which no diffraction takes place and the reflection coeffi-
cient becomes −1. Such singular behavior is demonstrated
analytically and numerically for a periodic Neumann sur-
face with small roughness and gentle slope [2], [3] and for a
periodic array of grooves with large groove depth [4]. How-
ever, it appears in several numerical works [5]–[7] as such
phenomena that the 0th order diffraction efficiency becomes
unity and any other order diffraction efficiencies vanish at
LGLI.

On the other hand, it is predicted that the scattering
must occur at LGLI, if the rough surface is finite in extent
[8]. The prediction is supported numerically for a finite si-
nusoidal surface [9]–[11] and for a finite periodic array of
rectangular grooves [12].
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Fig. 1 The scattering of a TM plane wave from a periodic surface with
finite extent. ψi(x, z) and ψs(x, z) are the incident plane wave and the scat-
tered wave, respectively. θi and θs are the angle of incidence and a scat-
tering angle, respectively. W and σ are the width and roughness of the
corrugation, respectively.

Such a gap between a finite and infinite periodic cases
may be solved, if we obtain the asymptotic behavior of the
total scattering cross section at LGLI as W → ∞. This is
because a finite periodic surface approaches to a periodic
surface as W → ∞. Taking this idea, we numerically cal-
culated the total scattering cross section against the corruga-
tion width for two cases: a finite periodic array of rectangu-
lar grooves [12] and a finite sinusoidal surface [11]. From
numerical results, we estimated that the total scattering cross
section must diverge but the total scattering cross section per
unit surface must vanish at LGLI as the corrugation width
goes to infinity. However, it is essentially difficult to obtain
by a numerical method the asymptotic behavior of the total
scattering cross section. However, analytical theories have
not been developed yet.

This paper obtains an asymptotic formula of the total
scattering cross section at LGLI. We start with the under-
sampling approximation [10], [11], where the angular spec-
trum of the scattered wave is approximately represented by
a finite undersampling sequence. We derive a matrix equa-
tion for the finite sequence and then evaluate analytically the
matrix elements given by integrals by use of a rectangular
pulse approximation. In general, the matrix equation cannot
be solved analytically. In a special case where the angle of
incidence becomes low grazing and W is sufficiently large,
we obtain an analytic expression of the 0th component of
the finite sequence by Cramer’s formula, in terms of which
a new asymptotic formula for the total scattering cross sec-
tion at LGLI is obtained. The formula represents a remark-
able fact that the total scattering cross section is indepen-
dent of the period and the surface roughness and increases
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in proportion to the square root of the corrugation width. By
comparison with numerical results, it is then shown that the
asymptotic formula is fairly accurate when the corrugation
width is large enough.

Next, we consider a case where the corrugation is small
in roughness and is not large in width. In such a case, the
scattered wave can be obtained by a single scattering ap-
proximation [13], which gives the total scattering cross sec-
tion proportional to the Rayleigh slope parameter and the
corrugation width. From the asymptotic formula and the
single scattering solution, a transition point Wt is defined
explicitly. It is then shown numerically that the asymptotic
formula becomes fairly accurate in the multiple scattering
region where the corrugation width is much larger than the
transition point.

In this paper, a time variation e−iωt is assumed and sup-
pressed.

2. Formulation

We consider the scattering of a TM plane wave from a sinu-
soidal surface with finite extent shown in Fig. 1. We write
the surface corrugation as

z = f (x) = σu(x|W) sin(kLx), kL =
2π
L
, (1)

u(x|W) = u2(x|W) =

{
1, |x| ≤ W/2
0, |x| > W/2

, (2)

where L is the period, kL is the spatial angular frequency of
the period L, and W is the width of corrugation which is an
integer multiple of the period L to make f (x) continuous at
x = ±W/2. u(x|W) is a rectangular pulse, and σ is the sur-
face roughness. We denote the y component of the magnetic
field by ψ(x, z), which satisfies

[
∂2

∂x2
+
∂2

∂z2
+ k2

]
ψ(x, z) = 0, (3)

in the region z > f (x) and the Neumann condition on the
surface (1)

[
∂

∂z
− d f

dx
∂

∂x

]
ψ(x, z)

∣∣∣∣∣∣
z= f (x)

= 0. (4)

Here, k = 2π/λ is wave number and λ is wavelength. We
write the incident plane wave ψi(x, z) as

ψi(x, z) = e−ipxe−iβ(p)z, p = k · cos θi, (5)

where θi is the angle of incidence (See Fig. 1) and β(p) is a
function of p defined by

β(p) =
√

k2 − p2, Re
[
β(p)

] ≥ 0, Im
[
β(p)

] ≥ 0. (6)

Here, Re and Im are real and imaginary part, respectively.
Since the surface is flat for |x| > W/2, we put

ψ(x, z) = ψi(x, z) + e−ipxeiβ(p)z + ψs(x, z), (7)

where the second term in the right-hand side is the specu-
larly reflected wave and ψs(x, z) is the scattered wave due to
the surface corrugation. We write an approximate expres-
sion of ψs(x, z) as

ψs(x, z) =
∫ kB

−kB

Aβ(s)

β(p + s)
e−i(p+s)x+iβ(p+s)zds, (8)

which is made up of up-going plane waves and evanescent
waves. Here, kB is a truncated band width and Aβ(s) is the
angular spectrum, which is the amplitude of the partial wave
scattered into the θs = Θ(p + s) direction. Here, Θ(p + s) is
defined by

Θ(p + s) = arccos
[
− p + s

k

]
=

∫ s

−(p+k)

ds′

β(p + s′)
, (9)

which is complex in general. We note that Θ(k) = π and
Θ(−k) = 0. If we put s = mkL, (m = 0,±1,±2, · · ·), this be-
comes a famous grating formula [14] for a perfectly periodic
surface,

Θ(p + mkL) = arccos[−(p + mkL)/k], (10)

where Θ(p + mkL) is the mth order diffraction angle. We
assume that the scattered wave ψs(x, z) satisfies the Som-
merfeld radiation condition and becomes a cylindrical wave
in the far region.

The optical theorem is analogous to the famous for-
ward scattering theorem and may be written as [9],

pc = pinc, (11)

pc = −4π
k

Re[Aβ(0)], (12)

pinc =
W
2π

∫ π

0
σs(θs|θi)dθs, (13)

σs(θs|θi) =
4π2

kW
|Aβ(−k cos θs − k cos θi)|2. (14)

Here, σs(θs|θi) is the differential scattering cross section per
unit surface. The optical theorem (11) states that the total
scattering cross section pinc is equal to pc the loss of the
amplitude of the partial wave scattered into the specularly
reflection direction. Because of (11), however, we will call
pc the total scattering cross section.

2.1 Undersampling Approximation

For a sufficiently large W, let us calculate Aβ(s) by the un-
dersampling approximation [10], [11], in which the scat-
tered wave is physically approximated by a finite sum of
beams diffracted into directions given by the grating for-
mula (10) and effects of edges at x = ±W/2 are neglected
implicitly.

Let us write an undersampling approximation of the an-
gular spectrum Aβ(s) as

Aβ(s) =
1

2π

NQ∑
n=−NQ

QnU(s − nkL|W), (15)
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U(s|W) =
∫ ∞

−∞
u(x|W)eisxdx =

sin(sW/2)
(s/2)

, (16)

U(nkL|W) = Wδn,0, (17)

lim
W→∞U(s|W) = 2πδ(s), (18)

where [Qn] is a finite undersampling sequence, U(s|W) is
the Fourier transform of u(x|W), δmn is Kronecker’s delta
and δ(s) is Dirac’s delta function. Physically, (15) repre-
sents a finite sum of diffraction beams, where Qn is the am-
plitude of the nth order diffraction beam scattered into the
θs = Θ(p + nkL) direction with a beam shape described by
U(s − nkL|W).

Substituting (7) and (8) into (1), we obtain a set of
equations for vector [Ql] after some manipulations,

NQ∑
n=−NQ

Dl,n(p)Qn = El(p), (19)

Dl,n(p)=
∞∑

m=−∞

∫ kB

−kB

Cm(p + s, β(p + s))
2πWβ(p + s)

×U(s − nkL|W)U(s + (m − l)kL|W)ds, (20)

El(p) = − [
Cl(p,−β(p)) +Cl(p, β(p))

]
, (21)

Cm(α, β) = βJ−m(σβ)

+
σαkL

2
(J1−m(σβ) + J−1−m(σβ)) , (22)

where Jm(·) is the Bessel function. Here, (15), (16) and (17)
were obtained in Ref. [10], where the integral in (20) was
calculated numerically to solve (19). However, we will ob-
tain an analytical expression of the integral in (20) for suffi-
ciently large W.

2.2 Rectangular Pulse Approximation

To evaluate the integral in (20) analytically, we first rewrite
(22) as

Cm(α, β) =
σαkL

2
(δm,1 + δm,−1) + βvm(α, β),

vm(α, β) = J−m(σβ) +
σαkL

2

× J1−m(σβ) − δm,1 + J−1−m(σβ) − δm,−1

β
, (23)

lim
β→0

vm(α, β) = δm,0, (24)

lim
β→0

Cm(α, β) =
σαkL

2
(δm,1 + δm,−1). (25)

Using these formulas, we may rewrite (20) as

Dl,n(p) =
∑

m=±1

∫ kB

−kB

σkL(p + s)
4πWβ(p + s)

×U(s − nkL|W)U(s + (m − l)kL|W)ds

+

∞∑
m=−∞

∫ kB

−kB

vm(p + s, β(p + s))
2πW

×U(s − nkL|W)U(s + (m − l)kL|W)ds, (26)

which is evaluated asymptotically below.
When W → ∞, U(s|W) becomes Dirac’s delta function

by (18). This suggests that U(s|W) may be approximated by
a narrow rectangular pulse if W is sufficiently large. Thus,
we roughly approximate U(s|W) as

U(s|W) ≈ Wu(s|kW ), kW =
2π
W
, (27)

which we call the rectangular pulse approximation. By (27),
we have approximate formulas as follows.∫ ∞

−∞
f (s)U(s − nkL|W)U(s − mkL|W)ds

≈ 2πW f (nkL)δn,m, (28)∫ ∞

−∞
f (s)U(s − nkL|W)U(s − mkL|W)

β(p + s)
ds

≈ 2πW
k

f (nkL)δn,m∆(p + nkL|W). (29)

Here, f (s) is a slowly varying continuous function and

∆(p,W) =
k

2πW

∫ ∞

−∞
U2(s|W)
β(p + s)

ds (30)

≈ kW
2π

∫ kW/2

−kW/2

u2(s|kW)
β(p + s)

ds (31)

=
kW
2π

[
Θ (p + kW/2) − Θ (p − kW/2)

]
(32)

≈
{

k/β(p), p � ±k
c f (1 − i)

√
W/λ, p = ±k

, (33)

c f = 0.942, (34)

where Θ(p±kW/2) is defined by (9). When W/λ > 103, (33)
becomes fairly accurate. When p = ±k, however, (32) gives
(1 − i)

√
W/λ, which is slightly different in numerical values

from the integral on the right hand side of (30). To correct
this, we numerically determined the factor c f in (34). Phys-
ically, Θ (p + nkL + kW/2) − Θ (p + nkL − kW/2) is a (com-
plex) beam width of the nth order diffraction beam scattered
into the θs = Θ(p + nkL) direction. The lower equation of
(33) implies that a diffraction beam scattered into a graz-
ing direction has a much wider beam width proportional to√
λ/W , whereas the upper equation means that a beam into a

non-grazing direction has a narrow beam width proportional
to λ/W.

Applying (28) and (29) to (26), we obtain for suffi-
ciently large W,

Dl,n(p) = vl−n(p + nkL, β(p + nkL))

+
σkL(p + nkL)

2k
∆(p + nkL,W)[δn,l−1 + δn,l+1]. (35)

By (33), Dl,n(p) is independent of W when p+ nkL � ±k but
becomes proportional to

√
W/λ when p + nkL = ±k.

2.3 Cramer’s Solution

By Cramer’s formula, the solution of (19) is written as Qn =

En(p)/D(p), whereD(p) and En(p) are determinants.
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D(p) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−NQ) (0) (NQ)

D−NQ,−NQ · · · D−NQ,0 · · · D−NQ,NQ· · · · · · · · ·
· · · · · · · · ·

{0} D0,−NQ · · · D0,0 · · · D0,NQ· · · · · · · · ·
· · · · · · · · ·

DNQ,−NQ · · · DNQ,0 · · · DNQ,NQ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

NQ∑
m=−NQ

(−1)mDm,0(p)D[m,0](p), (36)

En(p) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−NQ) (n) (NQ)

D−NQ,−NQ · · · E−NQ · · · D−NQ,NQ· · · · · · · · ·
· · · · · · · · ·

{0} D0,−NQ · · · E0 · · · D0,NQ· · · · · · · · ·
· · · · · · · · ·

DNQ,−NQ · · · ENQ · · · DNQ,NQ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

NQ∑
m=−NQ

(−1)m+nEm(p)D[m,n](p) (37)

=

NQ∑
m=−NQ

(−1)mDm,0(p)E[m,0]
n (p), (38)

where {0} stands for the 0th row and (n) the nth column. In
these determinants, p is omitted. By the notation D[m,n](p),
for example, we mean the determinant obtained from D(p)
by eliminating the mth row and nth column. However, there
are many expressions for the determinant En(p). For ex-
ample, En(p) is unchanged by adding the nth column vec-
tor multiplied by a constant µ to the 0th column vector. In
other words, if n � 0, we may replace the 0th column vec-
tor [D−NQ,0(p), · · · ,D0,0(p), · · · ,DNQ,0(p)]t by [D−NQ,0(p) +
µE−NQ (p), · · · ,D0,0(p)+ µE0(p), · · ·, DNQ,0(p)+ µENQ (p)]t, t
denoting the transpose. Thus, we have from (38),

En(p) =
NQ∑

m=−NQ

(−1)m[Dm,0(p) + µEm(p)]E[m,0]
n (p),

(n � 0). (39)

where µ is any constant.
Using Cramer’s rule, (36) and (37), we may obtain the

solution Q0 as

Q0 =
E0(p)
D(p)

=

NQ∑
m=−NQ

(−1)mEm(p)D[m,0](p)

NQ∑
m=−NQ

(−1)mDm,0(p)D[m,0](p)

. (40)

Using (36) and (39), we also obtain the solution Qn as

Qn =

NQ∑
m=−NQ

(−1)m[Dm,0(p) + µEm(p)]E[m,0]
n (p)

NQ∑
m=−NQ

(−1)mDm,0(p)D[m,0](p)

,

(n � 0). (41)

Using these formulas, we next obtain asymptotic formulas
for Q0 and Qn.

3. Asymptotic Solution at LGLI

Let us calculate Qn at LGLI. In what follows, however, we
implicitly assume the single anomaly case, where k + nkL �
−k holds for any integer n. Putting p = k, β(p) = 0, and
n = 0 in (35) and using (24), we obtain

Dm,0(k) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, m = 0
σkL

2
∆(k,W), m = ±1

0, |m| = 2, 3, 4, · · ·
. (42)

By (33), we have

σkL

2
∆(k,W) =

(1 − i)c f

2

(
2πσ

L

) √
W
λ
, (43)

which is proportional to the Rayleigh slope parameter
2πσ/L and

√
W/λ. In the single anomaly case, only D±1,0(k)

increases proportional to
√

W/λ but any other component
Dm,n(p) is independent of W. From (21) and (25), we have

Em(k) = −σkkL(δm,1 + δm,−1). (44)

To calculate the numerator of (41), we put µ = ∆(k,W)/(2k).
Then, we have from (42) and (44),

Dm,0(k) +
∆(k,W)

2k
Em(p) = δm,0. (45)

Applying this relation to (41), we obtain

Qn=
E[0,0]

n (k)

D[0,0](k) − σkL

2
∆(k,W)[D[−1,0](k) +D[1,0](k)]

.

(46)

In the single anomaly case, D[0,0](k), D[−1,0](k), D[1,0](k)
and E[0,0]

n (k) are all independent of W. But they depend on
L and σ. Since σkL∆(k,W)/2 in (46) diverges by (43) when
W → ∞, we obtain the asymptotic expression of Qn as

Qn = − E[0,0]
n (k)

[D[−1,0](k) +D[1,0](k)]
2

σkL∆(k,W)
(47)

= − E[0,0]
n (k)

[D[−1,0](k)+D[1,0](k)]
2

σkLc f (1−i)

√
λ

W
, (48)

where n � 0. Since E[0,0]
n (k) is proportional to σkkL by (44),

(48) remains finite even at σ → 0. However, it is difficult
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to obtain a concrete expression of Qn (n � 0), because ana-
lytical expressions for E[0,0]

n (k) andD[±1,0](k) are difficult to
obtain.

Next, we substitute (42) and (44) into (40) to obtain,

Q0=
σkkL[D[−1,0](k) +D[1,0](k)]

D[0,0](k) − σkL

2
∆(k,W)[D[−1,0](k) +D[1,0](k)]

.

(49)

Since ∆(k,W) diverges as W → ∞, we obtain the asymptotic
expression of Q0 as

Q0 = − 2k
∆(k,W)

= − (1 + i)k
c f

√
λ

W
. (50)

Here, (48) and (50) mean that Qn decreases proportional to√
λ/W for sufficiently large W. Furthermore, Q0 in (50) is

independent of L and σ. These properties should be un-
derstood as multiple scattering effects†. However, the con-
vergence from (46) to (48) and from (49) to (50) is ex-
pected to be slow, because ∆(k,W) is proportional to

√
W/λ.

Furthermore, (43) suggests that the convergence could be-
come much slow, when the surface slope 2πσ/L is small.
It can be shown after some manipulation that [D[−1,0](k) +
D[1,0](k)]/D[0,0](k) is proportional to σ. Thus, when σ is
small, the convergence becomes much slow. These proper-
ties will be seen in numerical examples below.

3.1 Total Scattering Cross Section at LGLI

In the finite periodic case, the scattered wave becomes a
sum of diffraction beams, of which the main lobes are
scattered into the Θ(p + nkL) (n = 0,±1,±2, · · ·) direc-
tions. Thus, the differential scattering cross section has
a peak value σs(Θ(p + nkL)|θi) and a (real) beam width
Re[Θ(p + nkL + kW/2) − Θ(p + nkL − kW/2)]. Taking these
facts and (13), we roughly obtain

pinc

λ
=

W
2πλ

∑
n

σs(Θ(p + nkL)|θi)Re[Θ(p + nkL

+kW/2) − Θ(p + nkL − kW/2)]. (51)

Putting θi = 0 and p = k, let us evaluate the right-hand side.
Substituting (15) into (14) and using (48) and an approxi-
mate relation U(s− nkL|W)U(s−mkL|W) ≈ 0 for n � m, we
obtain

σs(Θ(k + nkL)|0) ≈ W
k
|Qn|2

= 4π

∣∣∣∣∣∣
E[0,0]

n (k)
[D[−1,0](k) +D[1,0](k)]

1
σkLc f

∣∣∣∣∣∣
2

, (n � 0), (52)

which is independent of W. We also obtain for n = 0 as

σs(Θ(k)|0)≈W
k
|Q0|2= 4π

c2
f

=14.162 (11.52 dB), (53)

which means σs(π|0) = σs(Θ(k)|0) does not depend on L, σ

and W, if W is sufficiently large. Using (32) and (33), we
obtain

pinc

λ
=

∑
n�0

σs(Θ(k + nkL)|0)Re

[
1

λβ(k + nkL)

]

+σs(Θ(k)|0)
c f

2π

√
W
λ
. (54)

Since σs(Θ(k + nkL)|0) is independent of W for any n, we
obtain a new asymptotic formula for sufficiently large W as

pinc

λ
=

2
c f

√
W
λ
. (55)

Next, let us calculate pc. By (15) and (17), we may
write the total scattering cross section pc as,

pc = −4π
k

Re[Aβ(0)] = −2
W
k

Re[Q0]. (56)

From (50) and (56), we obtain a new asymptotic solution for
sufficiently large W as

pc

λ
=

2
c f

√
W
λ
. (57)

Here, it is important to note that the optical theorem (11)
holds by (57) and (55).

By (57) we obtain the scattering cross section per unit
surface pc/W for sufficiently large W as

pc

W
=

2
c f

√
λ

W
. (58)

Formulas (57), (55) and (58) are important results of
this paper. The equations (57) and (55) mean that the to-
tal scattering cross section does not depend on the surface
roughness σ and the period L. This implies that the scatter-
ing becomes quite singular at LGLI, when W is sufficiently
large. When W → ∞, however, the total scattering cross
section pc at LGLI diverges and hence has no physical sig-
nificance. In other words, the scattering is defined only for
a target with finite extent. However, pc/W the total scatter-
ing cross section per unit surface can be defined even when
W → ∞. The equation (58) means that pc/W vanishes as
W → ∞. This means physically that the diffraction by a pe-
riodic surface with infinite extent does not occur at LGLI.
This agrees with theoretical and numerical results on the
diffraction by periodic gratings [2]–[7].

However, it can be shown theoretically (50) and (57)
are valid even in the double anomaly case where k + nkL =

−k holds for a certain integer n.

†In a case where σ is sufficiently small and W is not large,
the factor σkL∆(k,W)/2 and the second term in the denominator
in (49) become small. As a result, we obtain a single scattering
approximation as Q0 = σkkL[D[−1,0](k)+D[1,0](k)]/D[0,0](k), which
is independent of W. In this case, pc becomes linearly proportional
to W by (56). However, we will obtain an explicit expression of the
total scattering cross section (59) by the small perturbation method.
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4. Comparison with Numerical Results

We have obtained a new analytic formula of the total scat-
tering cross section (57) at LGLI. We also obtain an ana-
lytical expression for the differential scattering cross section
σs(θs|θi) at θs = π and θi = 0. To see their validity, let us
compare with some numerical results.

In the numerical examples below, we put NQ = 7 and
kB = (NQ + 1/2)kL. We set θi = 0.00001◦ instead of θi =

0. Then, we numerically calculated the integral in (20) and
then we solved (19) numerically to obtain the total scattering
cross section pc.

4.1 Example 1

To consider a single anomaly case, we put the period as
L = 2.75λ. Then, we obtain the total scattering cross sec-
tion pc at θi = 0.00001◦ for σ/λ = 0.2, 0.3 and 0.4 and
for W/λ = 1760, 3520, 7040, 14080 and 28160, where the
error with respect to the optical theorem is always less than
3.4×10−4. The result is plotted against W/λ in Fig. 2, where
the theoretical value by (57) is also plotted. As is expected
above, the numerical result becomes close to the theoreti-
cal value when σ/λ and W/λ become large. Note that the
dependence of pc/λ on σ/λ becomes small when W/λ be-
comes large.

Let us see some numerical examples. When W/λ =
1760, we have pc/λ = 98.71, 93.70 and 91.17 at σ/λ = 0.2,
0.3 and 0.4, respectively, whereas the theoretical value by
(57) is 89.07. When W/λ = 28160, we find pc/λ = 369.56,
361.55 and 358.48 at σ/λ = 0.2, 0.3 and 0.4, respectively,
which are close to the theoretical value 356.48. Disagree-
ments between numerical calculations and the theoretical
values by (57) are 3.7%, 1.4% and 0.4% at σ/λ = 0.2,
0.3 and 0.4, respectively, when W/λ = 28160. The dis-
agreement becomes larger as σ becomes smaller, because

Fig. 2 Total scattering cross section pc/λ against the corrugation width
W/λ. L = 2.75λ, θi = 0.00001◦ . ‘ASYM’ indicates the asymptotic solution
(57).

the convergence from (49) to (50) becomes slower. How-
ever, we may conclude (57) is fairly accurate when W/λ
becomes large enough.

Let us see the differential scattering cross section
σs(θs|θi) at θi = 0.00001◦ and θs = 180◦. By numer-
ical calculations, σs(180◦| 0.00001◦) becomes 10.98 dB,
11.20 dB and 11.22 dB at σ/λ = 0.2, 0.3 and 0.4, respec-
tively, when W/λ = 1760. When W/λ = 28160, how-
ever, σs(180◦| 0.00001◦) becomes 11.40 dB, 11.43 dB and
11.43 dB at σ/λ = 0.2, 0.3 and 0.4, respectively. These val-
ues are much closer to the theoretical estimation 11.52 dB in
(53).

4.2 Example 2

We put L = 2.5λ to see a double anomaly case. We also
calculated pc at θi = 0.00001◦ for σ/λ = 0.2, 0.3 and 0.4,
and for W/λ = 1600, 3200, 6400, 12800 and 25600, for
which the error with respect to the optical theorem is always
less than 7×10−4. Then, we plotted pc against W/λ in Fig. 3.
We see in the figure that the numerical result becomes close
to the theoretical value when σ/λ and W/λ become large.
We also see that the dependence of pc/λ on σ/λ becomes
small when W/λ becomes large.

When W/λ = 1600, we have pc/λ = 93.36, 88.86 and
86.64 at σ/λ = 0.2, 0.3 and 0.4, respectively, whereas (57)
gives 84.92. When W/λ = 25600, we have pc/λ = 351.01,
344.12 and 341.47 at σ/λ = 0.2, 0.3 and 0.4, respectively,
which is much close to the theoretical value 339.70. In fact,
disagreements are 3.3%, 1.3% and 0.5% at σ/λ = 0.2, 0.3
and 0.4, respectively, when W/λ = 25600. Here, we see
again that the disagreement becomes larger as σ becomes
smaller. However, this example implies that (57) is appli-
cable to a double anomaly case.

Next, let us see σs(θs|θi) at θi = 0.00001◦ and
θs = 180◦. When W/λ = 1600, we found numeri-
cally that σs(180◦| 0.00001◦) becomes 11.02 dB, 11.20 dB
and 11.22 dB at σ/λ = 0.2, 0.3 and 0.4, respectively.

Fig. 3 Total scattering cross section pc/λ against the corrugation width
W/λ. L = 2.5λ, θi = 0.00001◦ . ‘ASYM’ indicates the asymptotic solution
(57).
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When W/λ = 25600, however, σs(180◦| 0.00001◦) becomes
11.40 dB, 11.43 dB and 11.43 dB at σ/λ = 0.2, 0.3 and 0.4,
respectively. These values are much close to the theoretical
value 11.52 dB in (53). Therefore, we may conclude again
that our estimation of (53) is fairly accurate if W is large
enough.

5. Discussions

In order to obtain the asymptotic behavior of pc at LGLI,
our discussions have been restricted to a sufficiently large
W case.

Now let us consider a case where W is not large and
σ is much smaller than the wavelength. In such a case, the
single scattering process is dominant and the scattered wave
may be described by the first order perturbation [13]. The
total scattering cross section p(2)

c may be given by the second
order perturbation as†

p(2)
c

λ
≈ W
λ

(
2πσ

L

)2 k
β(k − kL)

, (59)

which is entirely different from the asymptotic solution
(57). Clearly, p(2)

c depends on the Rayleigh slope parame-
ter 2πσ/L and is proportional to W, whereas the asymptotic
solution (57) is proportional to

√
W/λ and is independent of

L and σ. This suggests that the W region is divided into two
regions: the single scattering region where (59) is valid and
the multiple scattering region where (57) is useful. The tran-
sition point Wt between these regions is determined from
(57) and (59) as

Wt

λ
=

[
2
c f

β(k − kL)
k

]2 (
2πσ

L

)−4

, (60)

which depends on σ/λ and L/λ. However, we note that (59)
and (60) hold only for a sinusoidal case.

To see these regions, we numerically calculated pc for
θi = 0.00001◦, L = 2.5λ and σ = 0.1λ and for W/λ from 50
to 25600. The result is shown in Fig. 4, where two straight
lines indicate theoretical estimations by (59) and (57). The
lines intersect at the transition point W = Wt = 723λ. Fig-
ure 4 clearly shows that pc/λ by numerical calculations is
linearly proportional to W/λ if W ≤ 200λ and becomes al-
most proportional to

√
W/λ when W ≥ 6400λ. This means

that the W region is divided into the single and multiple scat-
tering regions. In other words, the perturbation solution (59)
is applicable in the single scattering region with W 
 Wt.
On the other hand, our asymptotic solution (57) is useful
in the multiple scattering region with W � Wt. This is an
important conclusion of this paper†† .

†Here, we implicitly assume |k − kL | < k. Equation (59) may
be obtained from (24) in Ref. [13] by putting p = k.
††In the case of Fig. 4, p(2)

c /λ by (59) is about 10% smaller than
the numerical solution when W = 50λ. Also, pc/λ by (57) is 15%
(12%) smaller than the numerical solution at W/λ = 6400 (W/λ =
25600).

Fig. 4 Total scattering cross section pc/λ against the corrugation width
W/λ. σ = 0.1λ, L = 2.5λ, and θi = 0.00001◦ . A box indicates the
numerical solution. ‘PERT’ and ‘ASYM’ indicate the theoretical estima-
tions by the second order perturbation (59) and by the asymptotic solution
(57), respectively. These theoretical lines intersect at the transition point
W = Wt = 723λ.

6. Conclusions

This paper deals with the scattering of a TM plane wave
from a perfectly conductive sinusoidal surface with finite
extent. In general, numerical methods are required to obtain
properties of the scattering. By use of the undersampling
approximation and a rectangular approximation, however,
we successfully obtain a new analytical formula for the to-
tal scattering cross section at a low grazing limit of incident
angle for a large corrugation width. The asymptotic for-
mula (57) represents a remarkable fact that the total scatter-
ing cross section is independent of the period and the surface
roughness and increases in proportion to the square root of
the corrugation width. By comparison with numerical re-
sults, we found that the formula is fairly accurate, when the
surface is small in roughness and in slope, and when the cor-
rugation width W is large enough. We newly introduced the
transition point Wt between the single and multiple scatter-
ing regions. Then, we conclude that the asymptotic formula
becomes useful in the multiple scattering region where the
corrugation width W is much larger than the transition point
Wt.

Our discussions were restricted to a special case where
the surface is sinusoidal, the angle of incidence is low graz-
ing and the corrugation width is sufficiently large. It is im-
portant to derive a formula applicable to any angle of inci-
dence for a non-sinusoidal surface. Moreover, we are inter-
ested in obtaining an analytic expression of the backscatter-
ing cross section for the remote sensing application. How-
ever, these problems are left for future study.
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