Period Reproducing Forms and Extremal Length Dedicated to Professor Masakazu SHIBA on his sixtieth birthday

Hiroshi Yamaguchi and Fumio Maitani

(Received September 25, 2003; Accepted December 2, 2003)

Abstract

We shall investigate period reproducing forms on an analytic submanifold in \mathbb{R}^3 and give a relation between a period reproducing form and a period reproducing differential of the boundary surface as a Riemann surface. An Accola type theorem for period reproducing forms is valid as in the case of Riemann surface.

Key Words: Solid torus; harmonic forms; period reproducing differentials; extremal length.

1. Introduction

Electric and magnetic fields on a solid torus lead us to an image of harmonic forms. Consider a typical solid torus

$$D = \left\{ (x, y, z) : (x - b\cos\theta)^2 + (y - b\sin\theta)^2 + z^2 \le a^2, 0 \le \theta \le 2\pi \right\}$$

and a 2-form $\omega = 2\pi (-y dy dz + x dz dx)/(x^2 + y^2)$ on D. The ω denotes a magnetic field by the electric current uniformly coiled around the surface of D and each magnetic force line is a closed curve. The period reproducing form of the closed curve is $2\pi (-y dx + x dy)/(b - \sqrt{b^2 - a^2})(x^2 + y^2)$. The extremal length of a family of these magnetic force lines is expected to be $b - \sqrt{b^2 - a^2}$. If we deform D a little, then the magnetic field will change and the magnetic force line may not be a closed curve. We intend to define a extremal length of a family of the magnetic force lines on an analytic submanifold in ${\bf R}^3$. The extremal length is defined with a small difference from the usual form.

2. Period reproducing forms

Let V be a domain such as a solid torus in the three dimensional Euclidean space \mathbf{R}^3 , whose boundary consists of analytic surfaces. For a 1-cycle γ , $\sigma(\gamma) = adx + bdy + cdz$ denotes harmonic period reproducing 1-form for γ , which satisfies

$$\int_{\gamma} \omega = (\omega, \sigma(\gamma)) = \iiint_{V} \omega \wedge *\sigma(\gamma)$$

for every closed one form ω with a finite Dirichlet norm, where

*
$$\sigma(\gamma) = adydz + bdzdx + cdxdy$$
.

We refer to the connection between $\sigma(\gamma)$ and period reproducing differential of the Riemann surface by conformal structure $\{du+idv\}$ induced from euclidean metric on the surface. Let $\sigma'(\gamma')$ be the period reproducing harmonic differential on the surface for a 1-cycle γ' which is homologous to γ . For any closed differential ω' on the Riemann surface, it holds

$$\int_{\gamma'} \omega' = (\omega', \sigma'(\gamma')) = \int \int_{\partial V} \omega' \wedge *'\sigma'(\gamma'),$$

where *' denotes * operator on the Riemann surface, i.e. for $\sigma'(\gamma') = pdu + qdv$, *' $\sigma'(\gamma') = -qdu + pdv$, *' $\sigma'(\gamma')$ is a differential of the function on the surface deleted γ' . Let the surface be represented as $\{(x,y,z): x = x(u,v), y = y(u,v), z = z(u,v)\}$ and u = u(x,y,z), v = v(x,y,z). Then u and v are real analytic functions which satisfy

$$*'\sigma'(\gamma') = -q\left(u(x,y,z),v(x,y,z)\right)\left(\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy + \frac{\partial u}{\partial z}dz\right)$$
$$+p\left(u(x,y,z),v(x,y,z)\right)\left(\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy + \frac{\partial v}{\partial z}dz\right)$$
$$=P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz.$$

These functions P(x,y,z), Q(x,y,z), and R(x,y,z) are real analytic and are defined on a neighborhood of the surface. Using them, set

$$\sigma'' = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

Take C^{∞} function f which is 1 on a neighborhood of the surface, and 0 in the part on which they are not defined. Then $f\sigma''$ is defined on \mathbf{R}^3 . For any closed 1-form ω on \mathbf{R}^3 ,

$$(\omega, *d(f\sigma'')) = \iiint_{V} \omega \wedge d(f\sigma'')$$

$$= -\iiint_{V} d(\omega \wedge f\sigma'') + \iiint_{V} d\omega \wedge f\sigma''$$

$$= -\iint_{\partial V} \omega \wedge f\sigma'' = -\iint_{\partial V} \omega \wedge *'\sigma'(\gamma')$$

$$= -\int_{\gamma'} \omega = -\int_{\gamma} \omega.$$

Hence orthogonal projection of $-*d(f\sigma'')$ to harmonic 1-form is $\sigma(\gamma)$. Note that for any C^{∞} function g in a neighborhood of D

$$0 = (dg, \sigma(\gamma)) = \iiint_{V} dg \wedge *\sigma(\gamma) = \iint_{\partial V} g(*\sigma(\gamma)).$$

Hence $*\sigma(\gamma) = 0$ along ∂V .

3. Extremal length of a curve family

Let V be a solid torus. For a closed curve γ in V, which is not homologous to 0, take a curve family

$$\Gamma = \{ \gamma' : \gamma' \text{ is a 1-cycle in } V \text{ which is homologous to } \gamma \}.$$

Extremal length of Γ is defined by

$$\lambda(\Gamma) = \frac{1}{A(\Gamma)}$$
, where $A(\Gamma) = \inf \left\{ \iiint_V \rho^2 dx dy dz : \rho \in T \right\}$,

 $T = \{\rho : \rho \text{ is a bounded non-negative Borel measurable density function on } V$,

and satisfies
$$\int_{\gamma'} \rho \, ds \ge n$$
 for every natural number n and rectifiable γ' which is homologous to $n\gamma$.

Here we will show the following Accola's theorem.

Theorem 3.1.

$$\lambda(\Gamma) = \|\sigma(\gamma)\|^2$$
.

Proof. Now $\sigma(\gamma) = adx + bdy + cdz$ satisfies the following;

$$\|\sigma(\gamma)\|^2 = \iiint_V \sigma(\gamma) \wedge \sigma(\gamma) = \iiint_V (a^2 + b^2 + c^2) dxdydz.$$

And for any rectifiable curve γ' in V

$$\int_{\gamma'} |\sigma(\gamma)| = \int_{\gamma'} \left| a \frac{\partial x}{\partial t} + b \frac{\partial y}{\partial t} + c \frac{\partial z}{\partial t} \right| dt$$

$$\leq \int_{\gamma'} \sqrt{a^2 + b^2 + c^2} \sqrt{\left(\frac{\partial x}{\partial t}\right)^2 + \left(\frac{\partial y}{\partial t}\right)^2 + \left(\frac{\partial z}{\partial t}\right)^2} dt$$

$$= \int_{\gamma'} \sqrt{a^2 + b^2 + c^2} ds,$$

where ds is the length element of γ' . For $\rho = \sqrt{a^2 + b^2 + c^2} / \|\sigma(\gamma)\|^2$, it follows that

$$\int_{\gamma'} \rho \, ds \ge \frac{1}{\|\sigma(\gamma)\|^2} \int_{\gamma'} |\sigma(\gamma)| \ge \frac{1}{\|\sigma(\gamma)\|^2} \int_{\gamma'} \sigma(\gamma) = \frac{n}{\|\sigma(\gamma)\|^2} (\sigma(\gamma), \sigma(\gamma)) = n.$$

On the other hand,

$$\iiint_{V} \rho^{2} dx dy dz = \frac{1}{\|\sigma(\gamma)\|^{4}} \iiint_{V} (a^{2} + b^{2} + c^{2}) dx dy dz = \frac{1}{\|\sigma(\gamma)\|^{2}}.$$

Therefore

$$\lambda(\Gamma) = \frac{1}{A(\Gamma)} \ge \|\sigma(\gamma)\|^2.$$

For $p \in V$, put

$$\alpha_{\theta} = \left\{ q : \frac{1}{\|\sigma(\gamma)\|^2} \int_{p}^{q} \sigma(\gamma) = \theta \mod Z \right\}, \text{ where } 0 \le \theta < 1.$$

Any component V_k of $V-\alpha_0$ does not contain a cycle γ . Because $\int_{\gamma} \sigma(\gamma) = \|\sigma(\gamma)\|^2$ and $V_k \cap \alpha_0 \neq \emptyset$ if it contains γ , this is a contradiction. The $\sigma(\gamma)$ is represented as $\sigma(\gamma) = du_k$ by a function u_k on V_k , such that $u_k = 0$ on α_k , $e = \|\sigma(\gamma)\|^2$ on α'_k , in the case V_k is surrounded by α_k, α'_k , and ∂V . We have

$$\iiint_{V_k} du_k \wedge *du_k = \iiint_{V_k} d(u_k(*du_k)) - \iiint_{V_k} u_k d(*du_k)$$

$$= \iint_{\partial V_k} u_k(*du_k) = e \iint_{\alpha'_k} *du_k + \iint_{\partial V \cap \partial V_k} u_k(*du_k) = e \iint_{\alpha'_k} *du_k.$$

Note that

$$0=(d1,du_k)_{V_k}=\int\int_{\partial V_k}*du_k=\int\int_{\alpha'_k}*du_k-\int\int_{\alpha_k}*du_k+\int\int_{\partial V\cap\partial V_k}*du_k.$$

Since $\iint_{\partial V \cap \partial V_k} *du_k = 0$, we h

$$\iint_{\alpha'_k} *du_k = \iint_{\alpha_k} *du_k,$$

$$e = \|\sigma(\gamma)\|^2 = e \sum \iint_{\alpha_k} *du_k = e \iint_{\alpha_k} *\sigma(\gamma).$$

It follows that

$$\iint_{\alpha_{\theta}} *\sigma(\gamma) = \iint_{\alpha_{0}} *\sigma(\gamma) = 1.$$

A component of α_0 does not surround a domain nor divide V. Hence α_0 consists of a unique component in solid torus V. We rewrite u_k as u. Along the

$$\alpha_{\theta} = \{q : u(q) = \theta\} = \{(x(t,s), y(t,s), z(t,s)) : (t,s)\},\$$

we have

$$0 = du = u_x dx + u_y dy + u_z dz$$
$$= (u_x x_t + u_y y_t + u_z z_t) dt + (u_x x_s + u_y y_s + u_z z_s) ds,$$

and

$$ax_t + by_t + cz_t = 0$$
, $ax_s + by_s + cz_s = 0$.

The normal vector of the surface is orthogonal to the vector (a,b,c) and is represented as a linear combination of (x_t,y_t,z_t) and (x_s,y_s,z_s) . The α_{θ} is orthogonal to ∂V . Integral curve

 $\beta(p_0)$ of

$$\frac{dx}{d\tau} = a\left(x(\tau), y(\tau), z(\tau)\right)$$

$$\frac{dy}{d\tau} = b\left(x(\tau), y(\tau), z(\tau)\right)$$

$$\frac{dz}{d\tau} = c\left(x(\tau), y(\tau), z(\tau)\right)$$

is uniquely determined if it goes through a point $p_i \in \alpha_0$. $\beta(p_0)$ is orthogonal to α_0 . If the point p_0 lies on ∂V , $\beta(p_0)$ lies on ∂V . If p_0 lies inside of V, $\beta(p_0)$ also lies inside of V. Let $p_n \in \alpha_0$ denote the ending point when $\beta(p_0)$ meets α_0 n-times after starting at p_0 . Denote this segment by $\beta'_n(p_0)$ and take a curve $\beta''_n(p_0)$ which connects p_n and p_0 on α_0 . The curve $\beta'_n(p_0) \cup \beta''_n(p_0) = \beta_n(p_0)$ becomes a closed curve which is homologous to $n\gamma$. For $\rho \in T$

$$n \leq \int_{\beta_{x}(p_{0})} \rho \, ds$$

$$= \int_{\beta_{x}(p_{0})} \rho \left(x(\tau), y(\tau), z(\tau)\right) \sqrt{\left(\frac{dx}{d\tau}\right)^{2} + \left(\frac{dy}{d\tau}\right)^{2} + \left(\frac{dz}{d\tau}\right)^{2}} \, d\tau + \int_{\beta_{x}(p_{0})} \rho \, ds,$$

and put

$$\mathit{M} = \sup \big\{ \inf \big\{ \int_{\gamma(p,q)} \rho \, ds : \gamma(p,q) \text{ is a curve in } \alpha_0 \text{ which starts from } p \text{ to } q \big\} : p,q \in \alpha_0 \big\}.$$

We can choose a curve $\beta_n''(p_0)$ so that

$$\int_{\beta_{\bullet}^{\star}(p_{0})} \rho \, ds \leq 2M.$$

On $\beta'_n(p_0)$, put $\theta(\tau) = u(x(\tau), y(\tau), z(\tau))$. From

$$d\theta = (u_x x_\tau + u_y y_\tau + u_z z_\tau) d\tau = (a^2 + b^2 + c^2) d\tau,$$

we have

$$n-2M \le \int_0^{ne} \frac{\rho}{\sqrt{a^2+b^2+c^2}} d\theta \le \sqrt{\int_0^{ne} \frac{\rho^2}{a^2+b^2+c^2} d\theta} \sqrt{\int_0^{ne} d\theta},$$

and

$$(n-2M)^{2} = \int_{\alpha_{0}} (n-2M)^{2} du \le ne \int_{\alpha_{0}} du \int_{0}^{ne} \frac{\rho^{2}}{a^{2}+b^{2}+c^{2}} du$$

$$\le n^{2} e \iiint_{V} \frac{\rho^{2}}{a^{2}+b^{2}+c^{2}} du \wedge du = n^{2} e \iiint_{V} \rho^{2} dx dy dz.$$

Since

$$\iiint_{V} \rho^{2} dxdydz \ge \left(1 - \frac{2M}{n}\right)^{2} \frac{1}{e},$$

we have

$$\iiint_{V} \rho^{2} dxdydz \geq \frac{1}{e} = \frac{1}{\|\sigma(\gamma)\|^{2}}.$$

Therefore

$$\lambda(\Gamma) \leq ||\sigma(\gamma)||^2$$
.

This concludes

$$\lambda(\Gamma) = \|\sigma(\gamma)\|^2$$
.

4. Harmonic forms restricted by boundary behavior

Let F^k be the real Hilbert space of square integrable k-forms on V by Dirichlet's inner product. Consider the following subspaces:

 F_{eo}^k is a completion of the class of exterior derivatives of $C^{\infty}(k-1)$ -forms with compact support,

 $F_h^k = \{\omega \in F^k; \omega \text{ is a } k\text{-form which is orthogonal to } F_{eo}^k + *F_{eo}^{3-k}\},$

$$F_{he}^{k} = \{d\omega \in F_{h}^{k}; \omega \in F^{k-1}\},$$

$$F_{ho}^{k} = \{ \omega \in F_{h}^{k}; \omega \text{ is orthogonal to } *F_{he}^{3-k} \}.$$

We call the element of F_h^k harmonic k-form. We have the well-known orthogonal decomposition;

$$F^{k} = F_{h}^{k} + F_{eo}^{k} + *F_{eo}^{3-k}, \quad F_{h}^{k} = F_{he}^{k} + *F_{ho}^{3-k} = F_{ho}^{k} + *F_{he}^{3-k}.$$

Let S be an oriented analytic surface in V. We assume that there is a neighborhood in V which is diffeomorphic to $S \times [-1,1]$. The orientation of S is positive for the direction corresponding to vector (0,1).

(I) Suppose that S is compact in V. Let f_s be a C^{∞} function on V-S such that $f_s=1$ on the part SV^+ diffeomorphic to $S\times (0,1)$, $f_s=0$ on the part SV^- diffeomorphic to $S\times (-1,0)$, and $f_s=0$ on a neighborhood of the boundary of V. The one form df_s has the following orthogonal decomposition:

$$df_s = \omega_s + \omega_1 + \omega_0, \quad \omega_s \in F_{ho}^1, \quad \omega_1 \in *F_{he}^2, \quad \omega_0 \in F_{eo}^1$$

We have

$$\|\omega_1\|^2 = (df_s, \omega_1) = \iiint_V df_s \wedge *\omega_1 = \iint_{\partial V} df_s \wedge \sigma_1 = 0,$$

where $d\sigma_1 = *\omega_1$. Hence $\omega_1 = 0$. If S divides V, there is a function w_s such that $dw_s = \omega_s \in F^1_{he}$. For $\omega_0 = dw_0$ and any one form $\omega \in *F^2_{he} + *F^2_{eo}$,

$$0 = (\omega_0, \omega) = \iint_{\partial V} w_0 * \omega.$$

It follows that $w_0 = 0$ on the boundary ∂V , $w_s = 1$ on the boundary α of the component which

contains SV^- , and $w_s=0$ on the boundary of the component which contains SV^+ . For any $\sigma \in F_h^2$,

$$(\sigma, *\omega_s) = \iiint_V dw_s \wedge \sigma = \iiint_V d(w_s \sigma) = \iint_{\sigma} \sigma = \iint_{S} \sigma.$$

Therefore $*dw_s \in F_h^2$ is the harmonic period reproducing 2-form of S.

(II) When S is not compact in V and doesn't divide V, let g_s be a C^{∞} function on V-S such that $g_s=1$ on SV^+ , $g_s=0$ on SV^- and $*dg_s=0$ along ∂V . The one form dg_s has the following orthogonal decomposition:

$$dg_s = \sigma_s + \sigma_1 + \sigma_0, \sigma_s \in *F_{ho}^2, \sigma_1 \in F_{he}^1, \sigma_0 \in F_{ho}^1$$

There are functions u_1 and u_0 on V-S such that $du_1 = \sigma_1$, $du_0 = \sigma_0$. Set $u_s = g_s - u_1 - u_0$, then u_s is a function on V-S and $du_s = \sigma_s$. It satisfies that

$$\lim_{SV^+\ni a'\to a} u_s(a') - \lim_{SV^-\ni a'\to a} u_s(a') = 1.$$

Let p be fixed and consider the following surface

$$\left\{q; \int_{p}^{q} \sigma_{s} \in Z\right\} = \cup \beta_{i},$$

where the integral path is in V-S and every β_i denotes a component with the natural orientation. Set $V-\cup\beta_i=\cup V_j$, where every V_j denotes a component. The boundary of V_j consists of some $\{\beta_i\},\{-\beta_{i'}\}$ and $\partial V\cup\partial V_j$. For any $dw\in F^1_{he}+F^1_{eo}$,

$$0 = (dw, \sigma_s) = \int \int_{\partial V} w(*\sigma_s).$$

Hence * $\sigma_s = 0$ on ∂V . We have

$$\left\|\sigma_s\right\|_{V_j}^2 = \iiint_{V_j} d(u_s(*\sigma_s)) = \iint_{\partial V \cap \partial V_j + \Sigma \beta_i - \Sigma \beta_i} u_s(*\sigma_s) = \iint_{\Sigma \beta_i} *\sigma_s.$$

For any $du \in F_h^1 \cap F_{he}^1(V-S)$, set

$$P(u) = \lim_{SV^+\ni a'\to a} u(a') - \lim_{SV^-\ni a'\to a} u(a').$$

This P(u) is the period of du along the closed curve γ in V-S which connects both sides of S. We have

$$(du, \sigma_s) = \iiint_{V-S} du \wedge \sigma_s = \iint_{\partial(V-S)} u(\sigma_s) = P(u) \iint_{S} \sigma_s$$

and further

$$\iint_{S} *\sigma_{s} = \|\sigma_{s}\|_{V}^{2} = \iint_{\Sigma B_{s}} *\sigma_{s},$$

hence $\sigma_s/\|\sigma_s\|^2$ is the period reproducing form of $F_h^1\cap F_{he}^1(V-S)$.

For x = h or x = ho, let

 $\Gamma(S;x) = \{S'; S' \text{ is a cycle consisting of a finite number of oriented surfaces in } V,$

and satisfies
$$\iint_{S'} \omega = \iint_{S} \omega$$
 for any $\omega \in F_x^2$.

Non negative Borel measurable density function ρ in V is admissible for $\Gamma(S;x)$ if it satisfies that for any $S' \in \Gamma(S;x)$

$$\int\!\!\int_{S'} \rho \, dS' \ge 1,$$

where dS' is the area element of the surface S'. Extremal length of $\Gamma(S;x)$ is defined by

$$\lambda(\Gamma(S;x)) = 1/\inf\left\{ \iiint_V \rho^2 dV; \rho \text{ is admissible for } \Gamma(S;x) \right\},$$

where dV is the volume element.

We put $\tau_s = \omega_s$ if x = h in case (I) and $\tau_s = \sigma_s$ if x = ho in case (II). Take the following density function

$$\rho_{s,x} = \frac{1}{\|\tau_s\|^2} \sqrt{\frac{\tau_s \wedge *\tau_s}{dV}}.$$

We have the following.

Theorem 4.1.

$$\lambda(\Gamma(S;x)) = \|\tau_s\|^2.$$

Proof. For $S \in \Gamma(S; x)$,

$$\iint_{S'} \rho_{s,x} dS' = \frac{1}{\|\boldsymbol{\tau}_s\|^2} \iint_{S'} \sqrt{\frac{\boldsymbol{\tau}_s \wedge * \boldsymbol{\tau}_s}{dV}} dS'$$

$$\geq \frac{1}{\|\boldsymbol{\tau}_s\|^2} \iint_{S'} * \boldsymbol{\tau}_s = \frac{1}{\|\boldsymbol{\tau}_s\|^2} \iint_{S} * \boldsymbol{\tau}_s = 1.$$

Thus $\rho_{s,x}$ is admissible for $S \in \Gamma(S;x)$, and

$$\lambda(\Gamma(S;x)) \geq \frac{1}{\iiint_{V} \rho_{s,x}^{2} dV} = \|\tau_{s}\|^{2}.$$

Set $\alpha_{t,x} = \{p; v_s(p) = t\}$, where $x = h, v_s = w_s$ in case (I) and $x = ho, v_s = u_s$ in case (II). Any $\alpha_{t,x} \in \Gamma(S;x)$ satisfies

$$\iint_{\alpha_{t,x}} \rho \, d\alpha_{t,x} \ge 1, \text{ for any admissible } \rho \text{ for } \Gamma(S;x).$$

We have

$$dv_s = \frac{\partial v_s}{\partial n} dn$$
, on $\alpha_{t,x}$,

where dn is the normal unit vector on the surface $\alpha_{t,x}$. Using $dV = d\alpha_{t,x} \wedge dn$, note that

$$*\tau_s = \frac{\partial v_s}{\partial n} d\alpha_t, \quad *\tau_s \wedge \tau_s = \left(\frac{\partial v_s}{\partial n}\right)^2 d\alpha_{t,x} \wedge dn, \quad \rho_{s,x} = \frac{1}{\|\tau_s\|^2} \left|\frac{\partial v_s}{\partial n}\right|.$$

Hence

$$\iiint_{V} \rho \rho_{s,x} dV = \frac{1}{\|\tau_{s}\|^{2}} \iiint_{V-S} \rho \left| \frac{\partial v_{s}}{\partial n} \right| d\alpha_{t,x} \wedge dn$$

$$= \frac{1}{\|\tau_{s}\|^{2}} \iiint_{V-S} \rho d\alpha_{t,x} \wedge dv_{s}$$

$$= \frac{1}{\|\tau_{s}\|^{2}} \int_{0}^{1} dt \iint_{\alpha_{t,x}} \rho d\alpha_{t,x} \geq \frac{1}{\|\tau_{s}\|^{2}}.$$

On the other hand, by Schwarz's inequality

$$\iiint_{V} \rho \rho_{s,x} dV \leq \sqrt{\iiint_{V} \rho^{2} dV \iiint_{V} \rho_{s,x}^{2} dV}$$
$$= \frac{1}{\|\tau_{s}\|} \sqrt{\iiint_{V} \rho^{2} dV}.$$

Therefore

$$\iiint_{V} \rho^{2} dV \ge \frac{1}{\|\tau_{s}\|^{2}}$$

and

$$\lambda(\Gamma(S;x)) = ||\tau_s||^2.$$

Department of Mathematics (H. Y.),
Faculty of Science,
Nara women's University,
Kitauoyanishimachi, Nara 630-8506
Department of Mechanical and System Engineering (F. M.),
Faculty of Engineering and Design,
Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585

References

- 1) R. D. M. Accola, Proc. Nat. Acad. Sci. U.S.A., 46, 540-543 (1960).
- 2) C. Blatter, Comment. Math. Helv., 35, 153-168 (1961).
- 3) W. V. D. Hodge, "The theory and applications to harmonic integrals", Cambridge University Press, p.282, (1952).
- 4) Y. Kusunoki, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math., 30, 1-22 (1956).

- 5) A. Marden, Ann. Acad. Sci. Fenn. Ser. AI., **359**, 1–32 (1965).
- 6) C. D. Minda, $Trans.\ Amer.\ Math.\ Soc.,\ 171,\ 1-22,\ (1972).$
- 7) H. Mizumoto, Kodai Math. Sem. Rep., 21, 205-222, (1969).
- 8) B. Rodin, Proc. Amer. Math. Soc., 15, 369-372, (1964).
- 9) H. Yamaguchi, *Proc. Japan Acad.*, **68**, 164-166, (1992).
- 10) H. Yamaguchi, Hokkaido Math. J., 25, 1-53, (1996).