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Abstract

We shall investigate period reproducing forms on an analytic submanifold in R?
and give a relation between a period reproducing form and a period reproducing
differential of the boundary surface as a Riemann surface. An Accola type theorem for
period reproducing forms is valid as in the case of Riemann surface.
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extremal length.

1. Introduction

Electric and magnetic fields on a solid torus lead us to an image of harmonic forms.
Consider a typical solid torus

D:{(x,y,z) t(x—bcos0)’+ (y-bsinB)®+22<a?,0<6< 27:}»

and a 2-form a):2ﬂ(—ydydz+xdzdx)/(x2+y2) on D. The w denotes a magnetic field
by the electric current uniformly coiled around the surface of D and each magnetic
force line is a closed curve. The period reproducing form of the closed curve is
27 (- ydx+xdy)/(b—\/bz—az)(x2+y2). The extremal length of a family of these magnetic
force lines is expected to be b—/b*— a®. If we deform D a little, then the magnetic field will
change and the magnetic force line may not be a closed curve. We intend to define a
extremal length of a family of the magnetic force lines on an analytic submanifold in R?.
The extremal length is defined with a small difference from the usual form.

. 2. Period reproducing forms
Let V be a domain such as a solid torus in the three dimensional Euclidean space R?,

whose boundary consists of analytic surfaces. For a 1-cycle ¥, 0.(Y) = adx + bdy + cdz denotes
harmonic period reproducing 1-form for ¥, which satisfies

fywv=(w,a(w)=fffvm*o<y)
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for every closed one form @ with a finite Dirichlet norm, where
*0 (Y) = adydz + bdzdx + cdxdy .

We refer to the connection between o (y) and period reproducing differential of
the Riemann surface by conformal structure {du+ idv} induced from euclidean metric on
the surface. Let o'(y’) be the period reproducing harmonic differential on the surface for
a l-cycle y” which is homologous to y. For any closed differential @’ on the Riemann

surface, it holds
f w'=(w',0'(y))= / f WA¥o'(Y),
v’ 1%

where * denotes * operator on the Riemann surface, i.e. for o'(y’) = pdu + qdv,*o'(y’) =
—qdu + pdv, ¥0'(Y") is a differential of the function on the surface deleted y’. Let the surface
be represented as {(x,y,2):x=x(u,v),y =y (u,v),z=2(u,0)} and u = u (x,y,2),v=v(2,y.2). Then u
and v are real analytic functions which satisfy

*o'(y) =—q(u(x,y.2),v(x, y,z))(?)—z dx+ g—ty’a’y+ g—;‘-dz)

+p(u(x’y’z),z)(x,y,z))(%%dx+ g—;’dy+%dz>

These functions P(x,y,2),Q(x,y,2), and R(x,y,z) are real analytic and are defined on a.
neighborhood of the surface. Using them, set

o'=P(x,y,2)dx+ Q(x,y,2)dy + R(x,y,2) dz.

Take C* function f which is 1 on a neighborhood of the surface, and 0 in the part on which
they are not defined. Then fo” is defined on R®. For any closed 1-form @ on R?,

(w,*dUG”)):ff/;/wAd(fG”)
:_ff Vd(a)/\fa”)+ff donfor
=—f ava)/\fa”:—ff/\*’cr’(y’)

:—/;a):—fya).

Hence orthogonal projection of —*d(f0") to harmonic 1-form is o (y).
Note that for any C* function g in a neighborhood of D

Oz(dg"’(y))zff/;dgA*G(Y):ff?Vg(*G(y))'

Hence *o () =0 along aV.



Period Reproducing Forms and Extremal Length 21
3. Extremal length of a curve family

Let V be a solid torus. For a closed curve ¥ in V, which is not homologous to 0, take a

curve family
I'={y"y" is a l-cycle in ¥ which is homologous to ¥ }.
Extremal length of I is defined by

Mr):A_%F—)’ where A(F)zinf{fffpzdxdydz:pe T},
14

T= { p: p is a bounded non-negative Borel measurable density function on v,
and satisfies f pds = n for every natural number #
and rectifiable 7’ which is homologous to Y }.

Here we will show the following Accola’s theorem.

Theorem 3.1.
A =|om]*

Proof. Now o () = adx + bdy + cdz satisfies the following;

||G(7)I|2=fffvo(}')/\*0(y)=fffv(a2+b2+c2)dxdydz.

And for any rectifiable curve y" in V

Jlowl-
f,/a +b%+c? [ %—) dt
:f,/a +b2+c ds,
.

where ds is the length element of y'. For p=/a’+b*+c* / lo )| it follows that

1 1 n
pds> f e fom: @ [@),0@)=n
J P52 i | lo iz et [ o= mipem.ot

On the other hand,
1 2,22, 2 1
p° dadydz = f// a’+ b+ c® ) dxdydz = :
/f v o]’ V( ) leml®

A= Zlo o)’

9z

+b—+c

Therefore
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For peV, put

q
0g=1q: 1_ 2/6()/):9 mod Z ¢, where 0<60<1.
loI* /5

Any component V, of V—o, does not contain a cycle y. Because fo(y)=||0(y)||2 and
Y

Vinay#0 if it contains 7, this is a contradiction. The o () is represented as 0 (y)=du, by a

function #; on V;, such that #,=0 on a4, e=||0'()/)||2 on o'y, in the case V, is surrounded by

ak,a’k, and aV. We have

f/ duk/\*duk:ff d_(uk(*duk))—ff/ukd(*duk)
, Vi . ar : Vi
:ff uk(*duk)=eff *du,ﬁff uk'(*duk)zef/ *duy.
vy ) a'g aVnav, a'y
Note that

0:'(d1,duk)vk: f *du;;/:/ *duk—ff *duk+ff *duk.
aVk a'y Oy aVﬂaVk

Since ffwn . *du,=0, we h
], o
e:||0()/)||2=é2/f *duk:eff *o (7).

ff *O'(}’)=ff *o(y)=1.

A component of o, does not surround a domain nor divide V. Hence a, consists of a unique
component in solid torus V. We rewrite #, as #. Along the

ap={q:u(q)=0}={(2(t.9.y(t.5).2(t,5)): (t.)},

It follows that

we have
O=du=u,dr+u,dy+u,dz
Ui+ u Yy +u,z)dt+ (U, x5+ uy Y+ u,z5)ds,
and
ax;+by;+cz,=0, ax,+by,+cz,=0.

The normal vector of the surface is orthogonal to the vector (a,b,c) and is represented as a
linear combination of (x;,y,,2;) and (x;,¥s,2s). The ¢ty is orthogonal to aV. Integral curve
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,B(Po) of
9L - 4 (2(0).y().2(D))

2 — b (2(0).9(0),2(D))

g,zc =¢(2(7),y(1),2(7))

is uniquely determined if it goes through a point p;€ aty. B(p,) is orthogonal to a. If the
point p, lies on aV, B(py) lies on V. If p, lies inside of V, B(p,) also lies inside of V. Let
Do € 0, denote the ending point when B(p,) meets &, n-times after starting at p,. Denote this
segment by B,(po) and take a curve B’ (p,) which connects p, and p, on &,. The curve
B»(o) U B (o) = B.(po) becomes a closed curve which is homologous to ny. For pe T

n< pds
;Bn(Pu)
-[ bz, z(r))/( L)) (L) e [ pas
ﬁ'n(P ) ﬁ'n(Pu)
and put
M= sup {inf { pds:y(p,q) is a curve in &y which starts from p to q}:p,q € a,}.

Y@ 9

We can choose a curve B (po) so that

f pds<2M.
B

On B,(po), put (7) = (@ (), y(T),2(7)). From

d0=(u, T+ U,y +u,2.)dT = (az+ b2+c2>df,

we have
ne p ne p2 ne
-2M < —db6 < —————dO 6
g ' fo Ja®+ b+t /./; a’+b*+c? /;d’
and
(n - 2M)? f (n— 2"‘a’u<ne/ *du/
0o a +b +c?
< *
nefffa+b2+c du N*du = neff pdxdydz
Since

2 2M \*1
ff Vp dxdydzz(l—-n—) %
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> 1_
p” dxdydz > + =
f f ¢ ||<5<Y>||

A <o)’

we have

Therefore

This concludes

A =Jom”

4. Harmonic forms restricted by boundary behavior

Let F* be the real Hilbert space of square integrable k-forms on V by Dirichlet’s inner
product. Consider the following subspaces:
F! is a completion of the class of exterior derivatives of C* (k- 1)-forms with compact
support,
Ff= {we F*: @ is a k-form which is orthogonal to F£+*F2~*1,
Fi={dweFi;weF* '},
Ff={weF};o is orthogonal to *F;, “}.
We call the element of F) harmonic k-form. We have the well-known orthogonal decomposi-
tion;

Fr=Fi+Fi+*F5 " Fi=Fp+*Fp "=Fu+*Fp "

Let S be an oriented analytic surface in V. We assume that there is a neighborhood in V
which is diffeomorphic to Sx[—1,1]. The orientation of S is positive for the direction corre-
sponding to vector (0,1).

(D Suppose that S is compact in V. Let f; be a C* function on V- S such that f;=1 on
the part SV diffeomorphic to §x(0,1), f;=0 on the part SV~ diffeomorphic to Sx (- 1,0),
and f;=0 on a neighborhood of the boundary of V. The one form df; has the following
orthogonal decomposition:

df.=w+w+@,, ©,€F,, w*F., wyeF.

||w1||2=(dfs,w1)=fffdfs/\*w1:f 4 A G1=0,
14 1%

where do,=*w,. Hence w,=0. If S divides V, there is a function w, such that dw,= @ € F;e.
For w,=dw, and any one form w € *Fy,+*F_

eo)

0= (@0, @)= ffwoa)
av

It follows that wy=0 on the boundary 9V, w,=1 on the boundary o of the component which

We have
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contains SV ~, and w,=0 on the boundary of the component which contains SV*. For any

oceF}
(G,*a)s)=fffvdws/\o=fffvd(wso)sza(f:f/;o.

Therefore *dw,e F ,12 is the harmonic period reproducing 2-form of S.

(II) When S is not compact in V and doesn’t divide V, let g, be a C* function on V- S such
that g;=1 on SV*, ;=0 on SV~ and *dg,=0 along aV. The one form dg, has the following
orthogonal decomposition:

dg,= 0,+0,+0,,0,€*F. ,0,€F,,,0,€ F...
There are functions #; and #, on V- S such that du,=0,,du,=0,. Set u,=g,—u,— u,, then

u, is a function on V- § and du,= 0,. It satisfies that

lim wu,(a)- lim wu,(a)=1.
SV*sa-a SV 3a~a

Let p be fixed and consider the following surface

{q;fqosez}:Uﬁf,

where the integral path is in V- S and every B; denotes a component with the natural
orientation. Set V-U B;=UV;, where every V; denotes a component. The boundary of V;
consists of some {B;},{— B} and daVUdV;. For any dw € F,L,,+F1

o=(dw,os>:f/w(*os>.
aV
Hence *0,=0 on aV. We have

"O.s”f/:ff d(MS(*GS)):ff us(*O's):ff *O-s-
I Vi avn av; + LBi- EBs 25;

For any du € F,nF,,(V-S), set

P(u)=s lim u(a)- lim u(a).

V'sa—-a SV sa-a

This P(u) is the period of du along the closed curve y in V- S which connects both sides

of S. We have
(du,os):ff du/\*Gssz u(*o;)=P(u)ff*o;
y-5 aW-9) s
[fpectot- ] .
S ZBi

and further
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hence o,/ ||63||2 is the peried reproducing form of F;NF,,(V-S).
For x=h or x=ho, let
r'(S;x)= {S’;S’ is a cycle consisting of a finite number of oriented surfaces in V,

and satisfies /f @ :f @ for any @ € F2 ).
s s

Non negative Borel measurable density function p in V is admissible for I'(S;x) if it satisfies

that for any S'€e I'(S;x)
f / pdS' =1,
5

where dS’ is the area element of the surface S’. Extremal length of I'(S;x) is defined by

l(I"(S;x))zl/inf{fff p*dV ;p is admissible for (S},
|4

where dV is the volume element.
We put T,=@; if x=% in case (I) and 7,=0; if x=ho in case (II). Take the following
density function

p. - L [TLA*T
el 4V

We have the following.

Theorem 4.1.

AT (S;2) =|7|°.

, 1 TN*T ,
sz dS= . £dS
JJ et Jf s
1 ff *T,= 1 /f*v: =1.
lw® /s P s

Thus p, . is admissible for S'e€ I'" (S;x), and

3

Proof. For S'e I'(S;x),

>

AT(S;2) = "f'/:/—ple:"TS"z'
1% S, X

Set a,,zz{p;vs(p):t}:, where x=h,v,=w;, in case (I) and x=ho,v,=u, in case (II). Any
a. €T (S;x) satisfies '

f f pda, =1, for any admissible p for I'(S;x).

We have
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dv,= avs dn, on o, 4,

where dz is the normal unit vector on the surface o, ;. Using dV = do, , A dn, note that

%’;; doy, *TAT,= (avs) do,  Ndn, p,.= s 1"2 % .
Hence 3
f/ PP . dV=—2 fof S| da, . A dn
v |7 v-st

__1 ff dot, A do,
EARPAN S
-1 fldtf da, > —L
e )P

On the other hand, by Schwarz’s inequality

I/ Vpps,xdvs/fff prav [[[ pteav
el

ff pPdv=—
v Izl

AT (S;2)) = 7"

Therefore

and
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