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SUMMARY 

 
The author presents the operator formalism in dealing with radial wave functions of hydrogen-

like atoms. The essential point rests upon that the radial wave functions can be derived by 
successively operating lowering operators on a radial wave function having a maximum allowed 
orbital angular momentum quantum number. This approach resembles the operator formalism that 
deals with a quantum mechanical harmonic oscillator. The results agree with the conventional 
coordinate representation method based upon power series expansion that leads to associated 
Laguerre polynomials.  

The operator formalism explicitly represents the mathematical constitution of quantum 
mechanical systems. In this article the author shows this feature by adopting radial wave functions 
of hydrogen-like atoms as an example.  
 

Key Words:  Hydrogen-like atom, Radial wave function, Operator representation,  
Lowering operator, Associated Laguerre polynomial 

 
1 Introduction 
 

Hydrogen-like atoms have been dealt with by the quantum mechanical formulation and exact 
analytical solutions are well-understood.1) The relative motion of an electron is described in 
spherical coordinates where a method of separation of variables is well-established. Thus the radial 
equation for the electron is represented in a second-order differential equation as follows: 
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where Rl is a radial wave function parametrized with l; , Z, 0, and E denote a reduced mass of 
hydrogen-like atom, atomic number, permittivity of vacuum, and eigenvalue of energy. Otherwise 
we follow conventions. Usually the solutions are sought by a power series expansion and given by 
associated Laguerre polynomials.2‒6)  

It is well-known the second-order differential equations are often solved by an operator 
representation method. Examples include its application to a quantum mechanical harmonic 
oscillator.7) Nonetheless, the corresponding approach to the radial equation for the electron has 
been less popular to date. The initial approach, however, was made by Sunakawa.8) The purpose of 
this article rests upon further improvement of that approach.  
 
2 Operator formalism 
 

Sunakawa8) introduced the following differential equation by suitable transformations of a 
variable, parameter, and function.  

  

−�
�ψ�(�)
��� + ��(� + 1)

�� − 2
��ψ�(�) = �ψ�(�),																																																							(2) 

 

where � = ��
� , � = ��

ℏ� (
�
�)��, and ��(�) = ���(�) with a (≡ 4���ℏ�����)9) being Bohr radius 

of a hydrogen-like atom. Note that  and  are dimensionless quantities.  
Here we define the following operators: 
  

�� ≡
�
�� + ��� −

1
��.																																																																																																					(3) 

 
Hence,  

  

��� = − �
�� + ��� −

1
��,																																																																																																(4) 

 
where the operator ��� is an adjoint operator of ��. Notice that these definitions are different from 
those of Sunakawa.8) However, we describe the operator formalism following his literature.8) The 

operator �
��	(≡ �) is formally an anti-Hermitian operator2) and the second terms of Eqs. (3) and 

(4) are Hermitian operators, which we define as H. Thus we denote �� = A + H and ��� = ‒A + H. 
These representations are analogous to those appearing in the operator formalism of a quantum 
mechanical harmonic oscillator.7) Special care, however, should be taken in dealing with these 
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operators. First, the coordinate system we have chosen is not Cartesian coordinate but the polar 

(spherical) coordinate, and so  > 0. Furthermore, we should carefully examine whether �
�� is in 

fact an anti-Hermitian operator. This is because the solution ��(�)  must satisfy boundary 
conditions in such a way that ��(�) vanishes at  → 0 and ∞. We will come back to this point 
later.  

We further define an operator �(�) as follows: 
  

�(�) ≡ − ��
��� + ��(� + �)

�� − 2
��.																																																																																(5) 

 
Hence  

  
�(�) � ��������� + �(�),																																																																																																(6) 

 

where �(�) ≡ − �
(���)�. Alternatively,  

  
 �(�) � ����� + �(���).																																																																																																				(7) 
 	

If we put l = n ‒ 1 in Eq. (6) with n being a fixed given integer larger than l, we obtain  
 
 �(���) � ����� + �(���).																																																																																													(8) 
 
Regarding Eq. (8) we evaluate the following inner product of both sides: 
  

 � ���(���)�� ��� ��������� � +�(���) � ��� � 

              �� ���������� � +�(���) � ��� � 

              � ������� � ��� + �(���) � ��� � 

              � �(���).                    (9) 

 
Here we assume that  is normalized. On the basis of the variational principle the above expected 
value must take a minimum �(���) so that  can be an eigenfunction. To satisfy this condition 
  
 ����� �� �.                                                    (10) 
 
In fact, if Eq. (10) holds,  
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 �(���)� � �(���)�.																																																																																																								(11) 

 
We define such a function as below,  

 

 ����(�) � �.																																																																																																																									(12) 
 
From Eqs. (6) and (7) we have the following relationship: 
 
 �(�)���� � �����(���).																																																																																																		(13) 
 

Meanwhile we define the functions as shown below,  
 

 ����(�) � ������������ ∙∙∙∙ ��������(�) .																																																																										(14) 
 

With these functions (s ‒ 1) operators have been operated on ����(�) . Here 1 ≤ s ≤ n. Note that if s 

takes 1, no operation of �� takes place. For the sake of convenience we express 
 
 �(���) � �(���).																																																																																																														(15) 
 

Using this notation and Eq. (13) 
 

 �(���)����(�) � �(���)������������ ∙∙∙∙ ��������(�) 																																 

          � �������(�����)������ ∙∙∙∙ ��������(�) 																																 

    � �������������(�����) ∙∙∙∙ ��������(�) 																																 
    ∙∙∙∙∙∙															 
    � ������������ ∙∙∙∙ �(���)��������(�) 																																 

    � ������������ ∙∙∙∙ �����(���)����(�) 																																 

    � ������������ ∙∙∙∙ �����(���)����(�) 																																 

  				� �(���)������������ ∙∙∙∙ ��������(�) 																																 
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  				= �(���)����(�) .                                          (16) 

 

Thus total n functions ����(�)  belongs to the same eigenvalue �(���).  

If we define � � � − � and take account of Eq. (11), total n functions ��(�) (l = 0, 1, 2, ∙∙∙∙, 

� − 1) belong to the same eigenvalue �(���). Notice that ��(�) are associated with the operators 

�(�). Thus, the solution of Eq. (2) has been given by functions ��(�) parametrized with n and l on 

condition that Eq. (10) holds. As explicitly indicated in Eqs. (14) and (16), �� lowers the parameter 

l by one from l to l ‒ 1, when it operates on ��(�). The operator �� cannot be defined as indicated 

in Eq. (3), and so the lowest number of l should be zero. Operators such as �� are known as a 
ladder operator (lowering operator or annihilation operator in the present case).7) The implication 

is that the successive operations of �� on ����(�)  produce various parameters l down to zero, while 

retaining the same integer parameter n.   
 

3 Normalization of wave functions 
 
Next we seek normalized eigenfunctions. Coordinate representation of Eq. (10) takes  
  

	− �����
(�)

�� + ��� −
1
������

(�) = 0.																																																																																				(17) 

 
The solution can be obtained as  

  

 ����(�) = ���������,																																																																																																								(18) 
 

where �� is a normalization constant. This can be determined as follows:  
 

 � |�
� ����(�) |��� = 1.                                              (19) 

 
Namely, 
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 |��|� � �������/��� � 1.																																																																																										(20)�
�  

 
Consider the following definite integral: 

 

 � ������� � �
�� .																																																																																																									(21)

�
�  

 
Differentiating the above integral 2n times with respect to  gives 
 

 � ���������� � (��)����(2�)! ��(����).																																																														(22)
�
�  

 
Substituting 1/n into , we obtain 

 

 � �������/��� � (��)����(2�)! �(����).																																																															(23)
�
�  

 
Hence, 

 

 �� � ����
���� /�(2�)!	.                                            (24) 

 
To further normalize the other wave functions, we calculate the following inner product:  
 

 � ��(�)|��(�) >�� ����(�) ���� ���� ����� ����� |�������� ���� ��������(�) >.			      (25) 

 
From Eqs. (6) and (7) we have 

  
 ����� � �(���) � ��������� � �(�).																																																																																	(26) 
 

Applying Eq. (26) to Eq. (25) repeatedly and considering Eq. (10), we finally reach the following 
relationship:  

  

 � ��(�)|��(�) >� ��(���) � �(�)� � ����(�)|����(�) >.			                      (27) 

 

Thus the normalized wave functions ���(�) are expressed from Eq. (14) as  
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 ���(�)=�(�� �)�
�
��������� ���� ���������(�) ,                                (28) 

 
where �(�� �) is defined such that  
  

 �(�� �) ≡ ��(���) � �(���)� � ��(���) � �(���)� ������ ��(���) � �(�)�,        (29) 
 
with �	 � � � 2. More explicitly,  
 

 �(�� �)=(����)!(�����)!(�!)�(���)!(�!)�(������)�                                         (30) 

 
and particularly 

 

 �����(�) � ����
���� �

�(��)! �
������.                                     (31) 

 
From Eq. (27) we define the following operator: 
 

 ��� ≡ ��(���) � �(���)]�����.																																																																																											(32) 
 

Then Eq. (28) becomes 
 

 ���(�) � ���������� ���� ����������(�) .                                     (33) 

 
4 Operator representations and associated Laguerre polynomials 

 

It will be of great importance to compare the functions ���(�)  with conventional wave 

functions that are expressed using associated Laguerre polynomials. For this purpose we define the 

following functions ��(�)(�) such that  

 

 ��(�)(�) ≡ (��)
�����(�����)!

��(���)! �
����������������� ���� �.																																																				(3�)  

 
The associated Laguerre polynomials are described as3)  
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 ��� (�) = �
�! �����

��
��� (�������), (� � −1).																																																												(35) 

 
In a form of power series expansion, the polynomials are expressed for integer k ≥ 0 as2,4,6)  
 

 ��� (�) = ∑ (−1)� (���)!
(���)!(���)!�! ������ .                             (36) 

 

The function ��(�)(�)  contains multiplication factors ����  and ���� . The function 

���������� ���� � is a polynomial of  with the highest order of ������. Consequently,  ��(�)(�) → 0 

when � → 0 and � → � (vide supra). This ensures that �
�� is indeed an anti-Hermitian operator. 

The argument is as follows: We define � � �
��. An inner product between arbitrarily chosen 

functions f and g is  
 

 � ���� �� � �∗�����
�  

    = ��∗���� − � (��∗)����
�  

    = ��∗������ −��∗�� �,                                (37) 
 
where f * is a complex conjugate of f. Meanwhile,  
 
 � ���� �=� ����� �.                                          (38) 

 
Therefore if the functions f and g vanish at � → 0 and � → �, �� = −� by equating Eqs. 

(37) and (38). This means that D is anti-Hermitian. The functions ��(�)(�) we are dealing with 

satisfy the aforementioned boundary conditions relevant to f and g. Then the operator �
�� is anti-

Hermitian. The operator �(�) appearing in Eqs. (6) and (7) is Hermitian. This is because  
 

 ����� = (−� � �)(� � �) 
     = �� − �� − �� � ���                                      (39) 
 
 (�����)� = �����.                                                 (40) 

 

 
The Hermiticity is true of ����� as well. This ensures physical meaningfulness of the eigenenergy 
and eigenstate (or wave function) which belongs to that eigenenergy.  

Next, consider the following operation: 
 

 �����(�)(�) 

 =[�(���) − �(���)]���(��)
�����(�����)!

��(���)! �
�
�� � ��� −

�
��� ��

����������������� ���� ���						(4�) 
 

Note that � ��� � ��� −
�
��� operates upon ������������������� ���� ��, and so we will be calculating 

differentiation of a product function, which contains again higher-order derivative of a product 
function. The procedure of calculation of Eq. (41) is somewhat lengthy but straightforward. Using 
well-known Leibnitz’ theorem2) pertinent to the higher-order differentiations of the product 
function, the result is expressed as  

 

 �����(�)(�) = (��)
����� (���)!

��(�����)! �
������������� ���� � 

    = (��)
(���)����[(��(���)��]!

��[(��(���)]! �
����(���)�����(���)���(���)�� ���� � 

    � ����(�)(�).                                            (42) 

 

Thus we find out that ��(�)(�) behaves exactly like ���(�). Moreover, if we replace l in Eq. 

(34) with n ‒ 1, we find  
 

 ����(�) (�) = ������(�) 																																																																																																													(43) 
 

Operating ����� on both sides of Eq. (43),  
 

 ����(�) (�) = ������(�) 																																																																																																													(44) 
 

Likewise successively operating ��� (� � � � � − �),  
 

 ��(�)(�) = ���(�)(�),																																																																																																									(45) 
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��(���)! �
�
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�
��� ��
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 �����(�)(�) = (��)
����� (���)!

��(�����)! �
������������� ���� � 

    = (��)
(���)����[(��(���)��]!

��[(��(���)]! �
����(���)�����(���)���(���)�� ���� � 
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with all allowed numbers of l (i.e. � � � � � � �). This permits us to identify ��(�)(�) and 

���(�)(�).  

Consequently, it is clear that the parameter n introduced in Eq. (8) is identical to a principal 
quantum number and that the parameter l (� � � � � � � ) is an orbital angular momentum 

quantum number.1) Although ��(�)(�) and ���(�)(�) are identical up to the constant cn expressed 

in Eq. (24), a complex constant with an absolute number of 1 (phase factor) remains undetermined.  
 
5 Radial wave functions 

 
The radial wave functions are derived from the following relationship as described earlier:  
  

 ��(�)(�) = ���(�)��.                                               (46) 

 

To normalize ��(�)(�), we have to calculate the following integral: 

 

 � |�
� ��(�)(�)|����� = � �

��
�
� |���(�)|�(�� �)�

�
� �� 

     = (��)� � |���(�)|��
� �� 

     = (��)�.																																																																																										(47) 
 

Accordingly, we choose the following functions ���(�)(�) for the normalized radial wave functions:  

 

 ���(�)(�) = �(���)���(�)(�).																																																																																									(48)  

 
Substituting Eq. (46) into Eq. (48) and taking account of Eqs. (34) and (45), we obtain4,6,10)  

 

 ���(�)(�) = �(����)� ⋅
(�����)!
��(���)! (

���
�� )� ��� �� �

��
���� ���������� ������ �.																													(4�) 

 
Equation (49) is exactly the same as the normalized radial wave functions that can be obtained as 
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the solution of Eq. (1) through the power series expansion.1) All these functions belong to the same 
eigenenergy En such that  
 

 �� = − ℏ�
�� (

�
�)�

�
�� .																																																																																																											(50)	 

 
Thus we have reached a conclusion that the operator formalism described in the present article 

is essentially the same as the conventional coordinate representation based upon the power series 
expansion that leads to associated Laguerre polynomials.2,4,6)  

 
6 Conclusion 

 
The author has developed the operator formalism in dealing with radial wave functions of 

hydrogen-like atoms. The essential point rests upon that the radial wave functions can be derived 

by successively operating the lowering operators bl on �����(�)  that is parametrized with a principal 

quantum number n and an orbital angular momentum quantum number l = n ‒ 1. This is clearly 
represented by Eqs. (28) and (33). The results agree with the conventional coordinate representation 
method based upon the power series expansion that leads to associated Laguerre polynomials.  

The operator formalism explicitly represents the mathematical constitution of quantum 
mechanical systems. In this article the author has shown this feature by adopting radial wave 
functions of hydrogen-like atoms as an example.  

The present article is based upon manuscripts prepared for the master’s course lectures of the 
author entitled “Solid-State Polymers Engineering.” The author should like to thank students for 
their valuable suggestions at the lectures.  
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要約 

本稿の目的は伝統的工芸品を制作する職人の技能、伝統的工芸品の価値と技能の関係、伝統的工

芸品産業の特殊性と技能の関係の 3 つの観点から、伝統的工芸品産業の技能継承の問題の所在を

明らかにすることである。現在、伝統的工芸品産業は数多くの課題を抱えているが、その中でも

技能継承問題は我が国固有の伝統と文化の行く末を左右する重要な問題である。技能継承に関し

ては、これまでも官民問わず種々の取り組みが実施されてきているにも関わらず、未だに効果的

な解決策が見出されていない。本稿では、技能継承問題が解決に至らない原因を、そもそもの問

題の所在が顕在化されていないことに起因すると仮定し、まず“技能”の定義を行ない、ものづ

くりにおける近年の技能継承の動向について論じた。その結果を踏まえ、伝統的工芸品産業の技

能継承に関する既存の取り組みを集成・精査し、伝統的工芸品産業特有の技能継承の問題の所在

について顕在化を行なった。本稿を通じて、①産業を構成する産地・業種・職種の概念、②道具

や材料といった作業環境および技能の評価基準、③産業的側面と文化的側面の 3 点が問題の所在

として顕在化された。 

 

キーワード：伝統的工芸品産業、ものづくり、技能継承  
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