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SUMMARY

The author presents the operator formalism in dealing with radial wave functions of hydrogen-
like atoms. The essential point rests upon that the radial wave functions can be derived by
successively operating lowering operators on a radial wave function having a maximum allowed
orbital angular momentum quantum number. This approach resembles the operator formalism that
deals with a quantum mechanical harmonic oscillator. The results agree with the conventional
coordinate representation method based upon power series expansion that leads to associated
Laguerre polynomials.

The operator formalism explicitly represents the mathematical constitution of quantum
mechanical systems. In this article the author shows this feature by adopting radial wave functions
of hydrogen-like atoms as an example.
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Lowering operator, Associated Laguerre polynomial

1 Introduction

Hydrogen-like atoms have been dealt with by the quantum mechanical formulation and exact
analytical solutions are well-understood.” The relative motion of an electron is described in
spherical coordinates where a method of separation of variables is well-established. Thus the radial
equation for the electron is represented in a second-order differential equation as follows:



dT - Rl = ERl, (1)

h?1 d , ARy RAI(l+1) Ze?*1
2ur? dmey r
where R; is a radial wave function parametrized with /; i, Z, &, and E denote a reduced mass of

2ur?dr

hydrogen-like atom, atomic number, permittivity of vacuum, and eigenvalue of energy. Otherwise
we follow conventions. Usually the solutions are sought by a power series expansion and given by
associated Laguerre polynomials.>®

It is well-known the second-order differential equations are often solved by an operator
representation method. Examples include its application to a quantum mechanical harmonic
oscillator.” Nonetheless, the corresponding approach to the radial equation for the electron has
been less popular to date. The initial approach, however, was made by Sunakawa.® The purpose of

this article rests upon further improvement of that approach.
2 Operator formalism

Sunakawa® introduced the following differential equation by suitable transformations of a
variable, parameter, and function.

) [lA+1) 2
- d;Z +[ pz —;] (o) = eth(p), 2)

where p ==, £ = £(92E, and 1,(p) = pR,(r) with a (= 4meoh?/ue?)” being Bohr radius

a b
of a hydrogen-like atom. Note that p and ¢ are dimensionless quantities.
Here we define the following operators:

b = d +(l 1) 3
Hence,
b= -2 +<l 1) 4
1 — dp p l ) ()

where the operator blT is an adjoint operator of b;. Notice that these definitions are different from
those of Sunakawa.® However, we describe the operator formalism following his literature.®) The

operator ;—p (= A) is formally an anti-Hermitian operator? and the second terms of Egs. (3) and

(4) are Hermitian operators, which we define as H. Thus we denote b; =4 + H and b;r =-A+H.
These representations are analogous to those appearing in the operator formalism of a quantum
mechanical harmonic oscillator.” Special care, however, should be taken in dealing with these



operators. First, the coordinate system we have chosen is not Cartesian coordinate but the polar

(spherical) coordinate, and so p > 0. Furthermore, we should carefully examine whether % is in

fact an anti-Hermitian operator. This is because the solution ¥;(p) must satisfy boundary
conditions in such a way that 1;(p) vanishes at p = 0 and co. We will come back to this point
later.

We further define an operator H® as follows:

sz—i;%m;n—ﬂ (5)
Hence

H® = by 1b] , + O, (6)
where ¢® = — (l+11)2.Alternatively,

H® = b/, + -1, (7)

If we put/=n— 1 in Eq. (6) with n being a fixed given integer larger than /, we obtain
H®D = p bl 4 =D, (8)
Regarding Eq. (8) we evaluate the following inner product of both sides:
<x|H® Y|y >=< x|b,bi|x > +e® D < x|y >
=< bix|bi|x > +e®V < x|y >

= ||bflx > || + e™ D < x|y >

> g-1), 9)

Here we assume that y is normalized. On the basis of the variational principle the above expected
value must take a minimum £™~1 so that y can be an eigenfunction. To satisfy this condition

Ibix >=0. (10)

In fact, if Eq. (10) holds,



HO Dy = gDy, (11)

We define such a function as below,

Yoo = x (12)

From Egs. (6) and (7) we have the following relationship:
H(l)bl+1 = bl+1H(l+1)- (13)

Meanwhile we define the functions as shown below,
lpr(ln)s = bp_s41bn_siz = by 11/)(71) (14)

With these functions (s — 1) operators have been operated on 1/)( ™ Here 1 <s < n. Note that if s

takes 1, no operation of b; takes place. For the sake of convenience we express
H®) = gn=s), (15)

Using this notation and Eq. (13)

H(n,s)d}?gri)s = H(n's)bn—s+1bn—5+2 n 1ll)(n)

= bn—s+1H(n'S_1)bn—s+2 bn—llp(n)

n-1
= bn—s+1bn—s+2H(n'S_2) ’ n 1710(”)

= bp_s41bn_si2 H™ z)b l/)(n)

= bn—s+1bn—s+2 b H(n l)lp(n)

= by_s41bp_s42 = by g(n 1)1/)(71)

= E(n_l)bn—s+1bn—s+2 by 1710(71)



= gDy ™ (16)

Thus total n functions 1/),(:1)5 belongs to the same eigenvalue ™1,
If we define | = n — s and take account of Eq. (11), total n functions zpl(") (I=0,1,2, -,
n — 1) belong to the same eigenvalue ™~V Notice that lpl(") are associated with the operators

H®_ Thus, the solution of Eq. (2) has been given by functions zpl(") parametrized with » and / on

condition that Eq. (10) holds. As explicitly indicated in Egs. (14) and (16), b; lowers the parameter

[/ by one from /to / — 1, when it operates on l/)l(n). The operator b, cannot be defined as indicated

in Eq. (3), and so the lowest number of / should be zero. Operators such as b; are known as a
ladder operator (lowering operator or annihilation operator in the present case).” The implication

is that the successive operations of b; on 1/),(171)1 produce various parameters / down to zero, while

retaining the same integer parameter 7.
3 Normalization of wave functions

Next we seek normalized eigenfunctions. Coordinate representation of Eq. (10) takes

)
Ay MmN ) _
Tl <p n) p® =0, 17)

The solution can be obtained as

(m

n-—1

= cpple P/, (18)
where ¢, is a normalization constant. This can be determined as follows:

Iy T¥nl?dp = 1. (19)

n-—1

Namely,



lcal? fy” pPme~2¢/mdp = 1. (20)
Consider the following definite integral:
® ,-2p8g, = L
J, e7?*dp 5 (21)
Differentiating the above integral 2n times with respect to & gives
© 2n,-2 _ (Lon+1 —-(2n+1)
[ pPre2pidp = ()P (2n)1 €@, (22)
Substituting 1/z into &, we obtain
® on,-2 _ LNo2n+1 (2n+1)
Iy pPre20indp = (5)P(2n)l n@nHD), (23)

Hence,

1

¢, = (E)n+E 1Sl (24)

n

To further normalize the other wave functions, we calculate the following inner product:
< lpz(n)w)z(n) >=< l/),(ﬁ)lbn—1 blT+2blT+1|bl+1bl+2 bn—ﬂ/}y(ﬁ)l >. (25)

From Egs. (6) and (7) we have
bib, + eV = b ;b + O, (26)

Applying Eq. (26) to Eq. (25) repeatedly and considering Eq. (10), we finally reach the following
relationship:

<P Pp® >= [eD _ (O] < M@ 5. (27)

Thus the normalized wave functions tﬁl(n) are expressed from Eq. (14) as



- 1 ~
Meie(n, 1) 241 byg = by P (28)

n-1>
where k(n,l) is defined such that

k(1) = [ — g0=D] . [¢(=D) — g@)] o [¢(1-D) _ O], (29)
with | < n — 2. More explicitly,

_(2n-1)!I(n-1-1)!(11)?

r(n, D) (n+D!(n!)2(nn-1-2)2 (30)

and particularly
n+x

7(n) — 2 2_ 1 n,—p/n

Vn1 (n) mp e . (31)
From Eq. (27) we define the following operator:

-~ 1

b, = [e™V — =Dz, (32)
Then Eq. (28) becomes

'I’Ln) = El+1Bl+2 En—ﬂf’r(:i- (33)

4 Operator representations and associated Laguerre polynomials

It will be of great importance to compare the functions gﬁl(n) with conventional wave
functions that are expressed using associated Laguerre polynomials. For this purpose we define the

following functions CDl(n) (p) such that

_ 20048 |(n-1-1) -2 2
o (p) = Oz [ e e AL (%), (34)

2n(n+l)! n

The associated Laguerre polynomials are described as®



LY (x) = %x‘vexd—n(x”“’e_x), (v > -1). (35)

dx™

In a form of power series expansion, the polynomials are expressed for integer k& > 0 as>*%

LE(x) = B o(~1)m — L ym, (36)

(n—-m)!(k+m)!'m!

p

The function CDl(n) (p) contains multiplication factors e » and p'*!'. The function
L2 (%p) is a polynomial of p with the highest order of p™~~1. Consequently, ¢l(n) (p) -0
when p - 0 and p — oo (vide supra). This ensures that % is indeed an anti-Hermitian operator.

The argument is as follows: We define D = %. An inner product between arbitrarily chosen

functions fand g is

< fIbg >= [" f*Dgdp

=[f"g1 — [, (Df)gdp
= [f*g]¥+< —Df*|g >, (37)

where f* is a complex conjugate of /. Meanwhile,
< fIDg >=< DTf|g >. (38)

Therefore if the functions fand g vanish at p = 0 and p —» o, DT = —D by equating Egs.

(37) and (38). This means that D is anti-Hermitian. The functions <Dl(n) (p) we are dealing with

: : .. d . :
satisfy the aforementioned boundary conditions relevant to fand g. Then the operator 2 s anti-

Hermitian. The operator H(®) appearing in Eqs. (6) and (7) is Hermitian. This is because

bib, = (~A+ H)(A + H)
= H? — A2 — AH + HA; (39)

(b b))t = b'b,. (40)



The Hermiticity is true of blb;r as well. This ensures physical meaningfulness of the eigenenergy
and eigenstate (or wave function) which belongs to that eigenenergy.
Next, consider the following operation:

by ¢1(n) (p)

1 3
_re(n-1) _ (-D7—5(2\l+> [(n=l-Difd (1 1 -2 1i172041 (2P
[8 € ] 2(n) : 2n(n+1)! [dp + (p )] {e "P Ln -1 (n )} (41)

a ., (L_1 -2 le1y2i041 (20 - :
Note that [dp + (p 1)] operates upon {e np T Ly, (n)}, and so we will be calculating

differentiation of a product function, which contains again higher-order derivative of a product
function. The procedure of calculation of Eq. (41) is somewhat lengthy but straightforward. Using

well-known Leibnitz’ theorem® pertinent to the higher-order differentiations of the product
function, the result is expressed as

~ 1 =)! -£
Be(™(p) = (' [momie 1A (%2)

2n(n+l-1)! n

N [(n a-n-1pt £ (-1D+1720-D+1  (2p
- (n) 2 2n[(n+({-1D]! "p L -(-1- 1( )

= o™ (p). (42)

Thus we find out that (Dl(n) (p) behaves exactly like lﬁl(n). Moreover, if we replace / in Eq.
(34) with n — 1, we find

o (p) = P, (43)
Operating b,_; on both sides of Eq. (43),

0 (0) = B, (44)
Likewise successively operating b, (1 <1 <n—1),

o (p) = P (p), (45)



with all allowed numbers of / (i.e. 0 <[ <n —1). This permits us to identify @™ (p) and

7 (p).

Consequently, it is clear that the parameter » introduced in Eq. (8) is identical to a principal
quantum number and that the parameter / (0 <[ <n-—1) is an orbital angular momentum

quantum number.” Although <Dl(n) (p) and l/)~l(n) (p) are identical up to the constant cn expressed

in Eq. (24), a complex constant with an absolute number of 1 (phase factor) remains undetermined.
5 Radial wave functions

The radial wave functions are derived from the following relationship as described earlier:

R () =™ /p. (46)
To normalize R l(n) (r), we have to calculate the following integral:

I IR MIPr2dr = [ 112G p)? 5 dp
— (%3 (® 7(n)2 d
@ Jy 112 dp

— (%3
= & 47)
Accordingly, we choose the following functions R l(n) (r) for the normalized radial wave functions:

R™(r) = J(Z]a)*R™ (7). (48)

Substituting Eq. (46) into Eq. (48) and taking account of Egs. (34) and (45), we obtain*!?

an

R0 = [ G e - ()] (). &

Equation (49) is exactly the same as the normalized radial wave functions that can be obtained as

10



the solution of Eq. (1) through the power series expansion.! All these functions belong to the same
eigenenergy En such that

nz z
—

E, =—
n 2u a

)2 (50)

Thus we have reached a conclusion that the operator formalism described in the present article
is essentially the same as the conventional coordinate representation based upon the power series

expansion that leads to associated Laguerre polynomials.>*%

6 Conclusion

The author has developed the operator formalism in dealing with radial wave functions of
hydrogen-like atoms. The essential point rests upon that the radial wave functions can be derived

(m

by successively operating the lowering operators b; on 1,[7”_1

that is parametrized with a principal

quantum number # and an orbital angular momentum quantum number / = n — 1. This is clearly
represented by Egs. (28) and (33). The results agree with the conventional coordinate representation
method based upon the power series expansion that leads to associated Laguerre polynomials.

The operator formalism explicitly represents the mathematical constitution of quantum
mechanical systems. In this article the author has shown this feature by adopting radial wave
functions of hydrogen-like atoms as an example.

The present article is based upon manuscripts prepared for the master’s course lectures of the
author entitled “Solid-State Polymers Engineering.” The author should like to thank students for
their valuable suggestions at the lectures.
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