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Abstract

We study conformal mapping between two doubly connected domains— rectan-
gles with a crossing slit. The ordered set of four vertices and the slit of the domain
shall respectively correspond to those of the image domain. We will find the image
rectangle and determine the modulus and the size of the crossing slit.
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1 Introduction

It is interesting to construct a conformal mapping between given domains. The first
author gave in [2] a conformal mapping from a longitudinally horizontal slit rectangle
onto a rectangle with a square removed. In this paper we will give a conformal map-
ping from the same domain to a rectangle with a crossing slit. These investigations are
positioned as the generalization of the work in [6]. Let 7 > 0 and consider in the com-
plex plane a rectangle R(7) = ()1(Q2Q3Q4 with the modulus 7, where the coordinates
of Q1,Q2,Q3,Q4 are —1 + 47, —1 —i7,1 — i1, 1 + o7 respectively. Take 0 < & < 1,
0 <np<rtandsetS(&,n) =[—¢& & U[—in,in]. We call S(£,n) a crossing slit. A vertical
slit S(0,7) and a horizontal slit S(&,0) will be also regarded as crossing slits. We call
the doubly connected domain R(7,&,n) = R(7) — S(&, n) a rectangle with a crossing slit
S(&,m). A conformal mapping between rectangles with a crossing slit is always assumed
to map the ordered set of vertices of rectangle to that of image rectangle in a natural
manner.

*The first author is grateful to Yahata Memorial Ikuei Foundation Japan for grant assistance.



7:7_2 1 +Z.T2

: ino

Figure 1: Conformal mapping between slit rectangles

We are interested in finding conditions under which there exists a conformal mapping
between two rectangles with a crossing slit R(7q, &, 71) and R(7s, &, 12). Specifically we
study the quantitative relation between 71, &1, 11 and 7, &2, 12. To this end it suffices to
consider a special case where 7; = 0.

Now, our problem reduces to the problem to study conformal mapping
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Figure 2: Reduction of our problem to a simpler case

2 Uniqueness

We begin with

Theorem 1. Let ®;(i = 1,2) be conformal mappings of R(11,&1,1m1) onto R(Ta, &, 12).
Then q)l = CI)Q.

Proof. Take an annulus A = {z : p < |z| < 1} which is conformally equivalent to
R(7,&,m1) and let p be a conformal mapping of A onto R(71,&1,71). The composition
f=pto®,'o® opisaconformal self mapping of A which fixes a boundary point

pH(Q1).
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By the reflection principle (see [4]), we can extend f to a conformal mapping f of the
twice punctured sphere C\ {0, co}. The origin and the point at infinity are removable sin-
gularities of f and hence f is a Mobius transformation with three fixed points. Therefore
f is the identity and &, = .

Corollary 1. Let ® be a conformal mapping of R(m,&,m) to R(m2,&,m2).
Then ®(z) = ¢(z) = —P(—=2).

This corollary shows that for the construction of the conformal mapping
® : R(719,&,0) — R(7,&,1n), it suffices to study ® only in the first quadrangle.
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Figure 3: Decomposition of the rectangle into four symmetric rectangles

3 Construction of the conformal mapping

We next prove

Theorem 2. For 0 < & < &, there uniquely exist positive numbers T and 1 and a
conformal mapping ¢ of R(7o,&o,0) to R(7,£,n).

Proof. Below the upper half plane is denoted by H. Let R(7) and R(7,&,7) denote
the parts of R(7) and R(7,&,n) in the first quadrangle. For our purpose, it suffices to



construct &, from R(7y,&y,0) to R(7,&,n). There exists a unique k (0 < k < 1) and a
unique conformal mapping ¢ : R(To) — H which maps the vertices i, 0, 1, 1 4 ity
to —1/k, —1, 1, 1/k respectively. We set s = ¥(&) € (—1,1). Fort (-1 <t < s)
there exists a unique rectangle R(7(t)) (7(t) > 0) and a unique conformal mapping
¢, : H — R(7(t)) which maps the points —1/k, ¢, 1, 1/k on the real axis to the vertices
iT(t), 0, 1, 1+ 47(t). Note that 7(¢) is uniquely determined for ¢ by the conformal
invariance of modulus and that 7(—1) = 75 and p_; = 1. Setn(t) = p(—1), £(t) =
©i(s). We can represent ¢, by Schwarz-Christoffel formula (cf. [4]):

dw
; (1)
/ V(w? = 1/k)(w — t)(w — 1)
where C} is the real number satisfying:
dw
. 2
Vo ) w1 ~
The numbers 7(t), £(t), n(t) are given by the following:
—1/k dw
= —iC 3
0 = i e 3)
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= C 4
0 e V=R w - fw - 1) @
! dw
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The domain R(7y, &, 0) is the image of ¢_; and D) = @y © (gp_l)_l gives the confor-
mal mapping of R(7, &, 0) onto R(7(t),&(t),n(t)). The £(t) is clearly continuous and
satisfies tlimlf (t) =0, ymﬁ (t) = &. Therefore for a given 0 < ¢ < &, there exists a ¢

which satisfies {(t) = £. The T and 7 are given as 7(¢) and 7(t). The modulus 7(¢) is also
continuous and monotonous by the argument of extremal length. As for C} note that
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And it follows that
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where A(t) and B(t) denote the integral parts of the first and second term respectively.
d B(t
We get ;;t = —C;tA (;) < 0. Hence C; is decreasing. By
1
d
- Ct v )
s V(W = 1/k)(w - t)(w — 1)
we have
df _ dCt / dw
VO =170 —T)

G du
2 Js (w—=t)y/(w =1/ (w —t)(w 1)
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<(h%_fﬁ)éfWW—uwx (w—1)Jo w —1/R)w—w—1)
< 0. Since AW is positive, it follows that det) | is negative and £(¢) is decreasing.

Thus for given £ (O < € < &) the equation £(t) = £ has aunique solutiont (—1 < t < s).
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Figure 4: Construction of ®, via the upper half plane



We constructed the conformal mapping ® by use of elliptic integrals. For other infor-
mation and applications of Schwarz-Christoffel formula and elliptic integrals, see [1], [3],
[4] and [5].

4 Examples

Some numerical examples of the modulus 7 and the size £, n of the crossing slit are
given in the next table. When the length of the horizontal slit decreases, the length of the
vertical slit increases while the modulus 7 is always increasing.
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Figure 5: Crossing slit for k = 0.2, s = 0.5
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Figure 6: Modulus 7 for s = 0.5



Table 1: Moduli

D s 1 & ¢ LT £(t) n(t)
| | -1000 T 0.950 0.335 0.000
‘ ‘ 0.875 | 0971 0.296 0.164
i 0510335 | 0750 ! 0993 0.247 0.237
‘ ‘ 0.625 | 1017 0.179 0.296
| ! 0500 | 1.043 0.000 0.350
‘ ; 1.000 , 0950 0.500 0.000
| | 0750 1 0993 0.453 0.237

02,0950 | 0.0 , 0.500 | -0.500 | 1.043 0.390 0.350
i i 0250 ' 1.100 0.293 0.453
‘ ‘ 0000 | 1.170 0.000 0.559
| | -1000 ' 0.950 0.665 0.000
| | 0.625 | 1017 0.623 0.296
i 05 10665 | 025 ! 1100 0.561 0.453
| | 0125 | 1212 0.451 0.616
! | 0.500 | 1.387 0.000 0.831
; | 1.000 , 0.719 0.339 0.000
| i 0875 1 0741 0.298 0.168
‘ 05,0339 | 0750 |, 0.764 0.248 0.241
i i 0625 1 0788 0.178 0.300
| | 0500 | 0813 0.000 0.353
i i -1000 0719 0.500 0.000
| | 0750 |, 0.764 0.448 0.241

0410719 | 00 10500 | -0500 ' 0813 0.384 0.353
| | 0250 | 0.869 0.287 0.451
| ! 0.000 ' 0.936 0.000 0.551
| ! 1.000 | 0.719 0.661 0.000
i i 0625 | 0788 0.615 0.300
| 0.5 | 0.661 | -0250 | 0.869 0.550 0.451
i i 0.125 1 0976 0.441 0.605
| | 0.500 | 1.143 0.000 0.809
i i 1000 T 0570 0348 0.000
‘ ‘ 0.875 |, 0.59 0.302 0.177
i 0510348 | -0750 ! 0619 0.248 0.250
| | 0.625 | 0.643 0.177 0.307
i ! 0500 | 0.667 0.000 0.357
| ; 100 | 0570 0.500 0.000
| | 0750 ' 0.619 0.442 0.250

0.6 ,0.570 | 0.0 | 0500 | -0.500 | 0.667 0.373 0.357
i i 0250 1 0720 0.276 0.447
| | 0000 | 0.782 0.000 0.536
i i -L000 0570 0.652 0.000
| | 0.625 | 0.643 0.597 0.307
i 05 10652 | 025 1 0720 0.529 0.447
| | 0125 | 0818 0.422 0.584
! | 0500 ' 0.968 0.000 0.766
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