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Abstract

We consider variational calculus of quantities, which are represented by the inner
product of some specific harmonic forms with boundary behavior, under a certain small
deformation of a complex manifold.
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1. Introduction

In this paper, we attempt to extend Ahlfors-Rauch type variational formulas 218

Riemann surfaces to those on complex manifolds. We have already given various variational
formulas for potential theoretical quantities under quasiconformal deformation of a Riemann
surface.® ® They have the same form as those of Ahlfors-Rauch. Inheriting the study, we
consider a variational calculus of quantity, which is represented by the inner product of
some specific harmonic forms with boundary behavior, under a certain small deformation of
a complex manifold. For the description of small deformation we require a corresponding
one to a quasiconformal mapping. Quasiconformal mappings are also discussed in real high
dimensional Euclidean space, but they are treated in here from a different point of view. We
introduce Beltrami tensors of diffeomorphisms which act as Beltrami coefficients of
quasiconformal mappings. The Beltrami tensor, as it were, indicates the degree of its
distortion. For the definition, we use Hodge’s conjugate operators on complex manifolds
with hermitian metrics. When a diffeomorphism is interposed between Hodge's conjugate
operators, the reflexive property of Hodge's conjugate operator is lost. As for harmonic
forms with boundary behavior, we use a certain Hilbert space devised from the Hilbert space
of square integrable forms. This allows us to use the same methods as those used with
Riemann surfaces. Under these circumstances, the degree of distortion of a certain harmonic
form with boundary behavior is estimated by the norm of the Beltrami tensor. Making use of
this estimation, we can obtain our Ahlfors-Rauch type variational formulas.
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2. Forms and the pull back by a diffeomorphism

Let M (resp. 1171) be an #—dimensional complex manifold with a hermitian metric
ga[;dz“®dz—ﬁ (resp. &a/;dw"®dzi)ﬁ), where g,3(2) (resp. g,5(w)) belongs to the C~ class.
Assume that there is an oriented C* homeomorphism f from M to M. We shall consider
differential forms and tensors, then make use of Einstein’s summation convention, with
which we agree to sum over the possible values (represented if necessary) of the indices
with respect to each index which appears twice, once at the top and once at the bottom. We
shall also use the Kronecker symbol 5{;‘,'_"'{;", which is zero unless 7)..., and j,...j, are
derangements of the same p distinct integers, and which is +1 when i,...7, is an even
derangement of j,...j, and is —1 when it is an odd derangement. Note that 8777 is a tensor.

Now a (p,q) form ¢ on M can be written in the form:
0= =1 @ura,p,. 2, 40N . AW AABPA . NP

(1<a;<n1=B,<n), where Pa,. a,p..B, 15 skew symmetric with respect to a,...,a, and
also B,....,3,. Abbreviating, we denote this by

@ =4, 5,dw Adi™, 2.1
where the summation is taken over A,=0f,...0(, 1 01 < Q... <A,

B.=B1...B,:Bi<Bs< ... < B, Now the pull back of ¢ by f is

1 d(w™ .. wwP . P
oef= 2 pigsmPens.5 @) 2P

K K
s+tep+qg?” a(z"..2"z

Xdz“' A ... ANdz"ANdZM A . N dZM.

A, =B, _
We denote the Jacobian by % or J ,A}fgf and write the pull back as
2z

@-f= 3 @anlirdz ndz". (2.2)

s+t=p+gq

symmetric contravariant tensor fields. They satisfy gor g = g}B "Ga=0 f . Let g(w) be the skew
symmetric covariant tensor field det(gqz(w)) of rank 2x. Set

TBo5. A A, (W) =855 5 a g (w), (2.3)

where

A p= 01 Oy 0 1< Oy <Oy, {0y, Oyt {0, ..., 0, } =0,

Bn—q:ﬂq-O-1---ﬁn;ﬂq+l<ﬁq+2<“-<ﬁn» {ﬁq+] ~~~~~ ﬁn}n{ﬁla---’ﬁq}—;@-
Set
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gt g Bz gam  gom ghib | ghbe (2.4)
and
@Y Pwy=g™ " g= P gy, - (w). (2.5)
Then, Hodge’s conjugate operator = is defined by
Q=i D) T P G o aa L NP W) dw® A dip (2.6)

This operator * transforms a (p,g) form @ to an (n —g.n — p) form *¢@ which is called the dual
form of ¢. This satisfies

(@it ca@r)=c1* P+ Co* @y,

(*@)=+(@), (  denotes the complex conjugate),

«(x@)=(-1)""¢g.

The pull back of *¢ by f is

o nn=b - A,H, ~2,B,
(x@)ef= D i"(-1)" 2 pr,B.-,A,A,,-,gA'H'g B¢H,S,

sS+t=p+gq
e A
A(w? -t - e =K.
9 W ) gz -1 g dz
a(z n~lz »v-t)
We have
nn-1 - -
— N +n(n-1) _ - Ag - Tu-r En-Ke-s
(@) ef) = D iI"(=1) z K. K. Av- A g
s+t=p+gq
nin-1) < =
, +np ~ ~A,H, ~%,B
Xi"(=1)" 2 " G5,B.. A4, 97 97 Qu, 2, (f(2)

&~¢_Arr
Xa(w w )

K; _Ar
a(zr""ZE"‘)dz ANdz™.

Note that gk, x.4._..4=(-1)" 20 0g, 44 . Changing the indices A(B) and
H(Z), set

A, B ) AvoiTaor JEu  Kao,
LEa=D""" gy, 44,9 g

- -4, 78,5, (W @
xgsls"uﬁlﬁ"PgﬂpA’gBo ) a((zr.-/EE.-.))' (2’7)

We can obtain

D (@) f)= S LS oa s (F2)dz" ndz ™ (2.8)

s+t=p+gq
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and

P~ (v @) f)= S @asUeE-LyY)d® /\a’z’l' (2.9)

s+t=p+gq
Let @ = igopdw® Adw” . Then

a“)'n

on
= iGap Gap AW AABPA . A dw® A dioP

2"det(goz)dr' A... Adx™  (w¥=x""+ix™), (2.10)

which is called the volume element. For two forms ¢ and y,»!(@ A+*W)/ ®" is a function
on M and the scalar product on M is defined as follows

AT,
@wa=[[ ona=[f 2255 @.11)

provided that the integral converges. If we choose a local variable w about w; so
that g.5(wo)=08%, then g(wy)=1 and W% (we)=y 4,5 (wo). For (p,g) forms ¢ and

w,qu*l/?:(Z)”qu,qu/A’m/n!, hence Q)Apgqu/A'B’(wo) is a function on M for variable
wy. Further, we choose a local variable z about z, so that éap(zo)=5§(wo= f(z0)). In these
variables it follows that at z,

Ll;}ﬁ—( l)n(p+s)+pq+st+2" ai+ 3. B+ i, kit D0, ZJA o Au-p

.
nnnnnn

We have
Bq pg + st Bq r pa+st r A B,
JAag=(-1 JK A and L7 =(-1 LY. (2.12)

By Laplace’s expansion theorem

A(w'.. w'w'...w") . _

JHE B T .n=l =n ifH,=A,and £,=B,.
2 kA Lki=q 0z ..2"2..2")

A f’+q 0 the other case

(2.13)

Hereafter, the Jacobian will be denoted by J. From egs. (2.2), (2.6) and (2.8) we can get

(@ fAGEY)f f)—: 2 Qa5 Wa,5J at z.

A,.B,

This allows us to conclude the following.

Lemma 2.1. For (p.g) forms ¢ and ¥
@ f (=D () fNu= @ W)z (2.14)
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3. Beltrami tensors

In this section, we define Beltrami tensors which correspond to Beltrami coefficients on

a Riemann surface. For a (p,¢g) form ¢ we have the representations
Q-1 (@) f) = D QanURE-Li5dz ndz ",
s+i=p+gq
DV Qa,s, (JK A,"'L ")dZK’/\dz_A’.

@ f+=1DPT I ((x @) f) =
s+it=p+g
> .C..C, (cf ,Cy is the notation of

H+tv=s+t

We consider simultaneous linear equations with
combination) unknowns K"'" which satisfy
3.1

for every (4,,B;)(p+g=s+1), where K; and A, are fixed. Assume that the solutions
denote one that is defined skew

yZ K'Z' exist and are uniquely determined. Let ,u o E'
> Then, we can verify 47" Zfl' £ becomes

symmetrically with respect to 7;,&;,k;,A; from My
a tensor and call it a Beltrami tensor. This terminology is derived from dw/9z= (dw/9z) ,u 1 for

1.8 -
g'].a.gﬁlfl"’gﬁuf.,

7;"5 1,5
L g g”ldl

n=1. Now
a.. aﬁl ﬁg?lKl..-g g

Mg
He x4, 1 #71 :6...8,

is independent of the choice of local variables, and hence is a function on M. If we
choose the local variable z at 2z, so that gag(zo)=gaﬁ(zo)=5“, it has the wvalue

(zo) 2= ulvistt! n Z‘

K. A/H, 2,

,uK'“'(zo) |2 at zy. Set

77-51

Zl #Kl 3 T

Hm(20) = Z Z |,U§:§,"(Zo)|2 and ||,u,,,||:sup Hm(Z0).
K, A, e M

K, A,
S+f=mu+v=m

We note some distortions
<1 Then for a (p.q) form @ (|@|< =) on M (p+q=m),

|<k®
|@ - F1*+](= @) f|*<2.C,.C, “kzllcoll

lo-F= 02 @@ o p| <kfof+ 1 (-5

(3.2)

Theorem 3.1. Let | &
(3.3)

Proof. Let z and w be local variables at zq.wo=(29) so that g,3(zo) =gq5(wo) 6,;

Consider the functions
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(@-fAx(@- )) v and ((+@) - A+ (@) =7)

We have from eqs. (2.2), (2.8)

3 @and AN 20) @ a8, 85N 20)

(@-fAx (@) ”n(zo)

K, A
s+t=p+q
< 3 {Slease)l 3 1Tne)l)
KuAl A‘,,B, Ap-Bq
st+i=p+gq

and
e— , -
(@GO MG s 3 { Dlease)l 3 1LEE@) ]
K., A A,,B; A,.B,
s+t=p+gq
Set
A,B, _ 2
XK,Z, - |J “LK A,|
Yarke = |JK:A,° ﬁiﬁlz—lJ:é,ﬁ:—LKutlt
From eq. (3.1)
JRi-Leils B WrheLpzP 3 lukil.
ll+l-{}=;v+q u+u"5;0+q
Hence
N OXph o< X UpheLeiPi+ PIEE) | 2P},
K, A K., A H, =,
s+t=p+gq s+t=p+gq $+f P'HI u+tv=p+gq
IR £ D M Vs B £l SE) > ugil)
K. A K, A, K. A, H, =,
s+t=p+gq s+t=p+gq S+t=p+qu+v=p+gq

From the normalization and eq. (2.13) D] Y}‘?’”AE, * = 4], Therefore,

K, A
s+t=p+q
Z XKAt
1 AB 2 s+At, ;1'+q
J Z {|J |+|LK |} Z YAP_Bv
s+t p+q KoA, KA
S+t=p+gqg

1+ > upsl

K, A H,=Z, 2
<9 s+t=p+qu+v=p+qg <21+k
- u—vz——- —_ 2

- > ui 1-k

KA H,Z2,

s+t=p+qu+v=p+gq

It follows that
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lo £+ | @) f
2 1+,um a)n
=J] gl onal2nConCor= s Gr

2 n
S2”Cpncq%f/ ZI¢A}B¢'2J%

A, 8B,

2= [[ @ fae TP+ @) fA TP T

2
:znc,,nc‘,i%l’zE o|’.

Forineq. (3.3) let @=@ - f= (D" ' ((x@) /), ¥ =@ - f+ (- 1)’ "?x ((» @) - f) and write as eq.
(2.9). We have

— 1 =
@B L= 3 |Qas Uit Ly 2)uis ol
A
< S T leasVis+liieolP{ X luki@) )
K, A, H, 2. H, =z,
St+t=ptqg utv=p+gq ‘ H+v=p+gq
=¥ AT 25 (20) i 20).

Hence |®| <k|¥|.
We now consider Beltrami tensors of composed mappings. Let M,ﬁ and M be

n—dimensional complex manifolds with hermitian metrics gag,gaﬂ,éaﬁ and f (resp.g) be a
diffeomorphism from M to M (resp. from M to M). Let J. A J (resp. L. L. L) denote those for
f, g, 9 f asin eq. (2.2) (resp. eq. (2.7)) and ,uﬁf /_tif ﬁﬁi be the Beltrami tensors of
f, 9.9 -f, respectively. We choose local variables z, w, x at 2o, wo=/(2y), xo=g(wy) on

M M. M, respectively so that 9ap(20) = g, ﬁ(wo) =gap(x0) =0 f Note that

Az’ _ @ x’) aw ™ wt)
8™ Z%) Ty @ W) 32T

From this and eq. (2.13)

A By 7K A _ JA"B” JF:E_MLK A —JJA’B"
S OTRETEE- R ¥ PR nEIEE g
= t+m=p+q H, Z,
ut+tv=p+gq u+v=p+gq
Hence
A, B, _ 1 j"ré: LK /1:
iK AT HZ= 5L,z
uto'=phyg
Similarly
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It thus follows that
VO S BN W V- S F e sea WY

=K,A, =K.A, o, ¢
H+v=p+gq
A, B, =A, B ' A, '
- {UH:s',—LH' L5 - K Lg_g_u;’,:%}

*A, B A, B +A,B K, /],
SOPS AR Fog RS R s BV ) ﬂH._,}

- > {UERE-LEEIRE oLy -unE LR IR R L))

a0 Ey
u+v=p+q

From eq. (2.13) the last term vanishes. On the other hand,
JEPS-Liy= ¥ Ly

[1]1

=K,A, =K,A, W+D-p+q =K,Z, s A,
—_ ~APBq Hl'—'ll ﬂ
- Z Z (JF.E..LF(E th )/—[ZA
H,Z, I'e,En '
w+02p g ¢ m= ptg

Thus, we have

H, = Iy ,En
u+tv=p+ql+m=p+gq
_ KA  ~TvEm B
= > [ = {] B Ll LR (g s uik
H, Z, {+m=p+gq
HU+tv=p+gq

TR R IRE IR - LR RO LR piE)
I Lﬁ)] 349

y—=u

Now consider a family of n—dimensional complex manifolds M, with a parameter
T=(T7,,T2,...,T») in a neighborhood of zero in m dimensional Euclidean space R™ and
diffeomorphisms f;:M,— M .. Applying the above results to M,:M,M“M:M and
fe=f fr+yac=g-f, assume that for AT =(0,...,0.7;,0,...,0) there exist -

B,)_ Jr\E,

. 1 ,+A,B, A,B, _ A, B,
,l.lmT(L £~ LT E) =55 LY E.

and

Then, from eq. (3.1)
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Urd-Ly%)

S g UREA LR S VBB LR g i T ]

t+m=p+gq

Thus, from egs. (2.13) and (3.4)

a PBV— qu PBQ -/ !-I AI PBU
B g D YR (ST O o DV L RV T R 2y
A LA
PBH S—I J”' PBV
o N A ImEIET-sRE S L%} (3.5)

4. The Hilbert space of families of forms

Pull back due to diffeomorphism does not always preserve (p,q) forms. We need to treat
them simultaneously for all p,q. Let £”? denote the vector space of (p,q) forms and the

direct sum by

={Pe??:9"? is a (p,g) form }.

ey
oo |l
INIA
<P
IAIA
X X

We consider the vector space E ={@=(¢:.92);0:€ F} which satisfies

(1) c@ = (c@.c@2). cpi=Pecp??

) Q+Y=(P1+ Y1 @2+ W3), @it yi=P P +y ),

3 (p (@1.92), @i= @(p(’ 9 where - denotes the complex conjugate,

(4) *2:(*¢2’#¢1)‘ #¢l=®(_ 1)p+q+l*¢ip,ql’ *¢2:®*¢(2P.4).

We call the element @ €F a family of forms. Since »»@P?=(-1?"Pp?,

xEQ; = * q;,.:@(_ 1?9 Lew @¥?=— @,. Therefore, »» @ = (4@, % @;) =— @. It follows that

tix@),

S

“(@Eix@)=Fi(

and @ =— i@ (resp.« @ = i@) if and only if @ = (. i4p) (resp. @ = (@. - k).

We use the following operators on E to E ,

(1) 3¢ = (3¢, ,3¢,), where 3= P ap;?,

3¢ 4, p,dz" NdZ® '=§.-¢A,,B,dz Adz** A dz"®,
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(2) 3 = (31, 3¢:), where 39;= D dp??,

o 4, 5,dz" A dz°® "=Tﬁ¢,4,,g,,d2 Adz* A dz®,
0z
(3) dp =3¢ + 3.

We know 93¢%?=39¢ (p,q) =0, 39¢??=-233¢p??. Hence 0@ = 39¢ =0, 33 =— 33¢ and
ddgo 0. We say that ¢ is closed if 39 =0, @ is coclosed if dx@=0 and_(g is har:nonic E @ is
closed and coclosed. If ¢ is harmonic, @ is also harmonic. A @ is said t_o be analytic (re_sp.
antianalytic) if it is clgsed and satis?ies the condition x@ = zqo (resp. *p= 1(0) If @is
analytic, @ is coclosed and harmonic. Every harmonic family of forms can be uniquely

written as the sum of an analytic and an antianalytic family of forms :

DO|—
s

—i*g).

II‘S
NJI»—'

AL

These properties of families of forms are analogous to those of 1-forms on Riemann

surfaces.
Now let
={Q=(¢1,9:):¢{"” are C* forms and ZZ«D(” P, 9F?) < o0},
i=1p.g
Forp,y € F®

gg ZZ (pq),wf_p.q))

=1p.gq

has a finite value and is called the scalar product of ¢ and y. This satisfies

(D [er@i+c2 @2, Y1=al@1, Y1+ c2(@s. Y],
@) ly.@1=Tp,¥]
@@ syl=3 o7 sy2)+3 GoP? i) =(p,y),

where P 7= (- 1)?* 1" s P,

We note

1=l @+ Yl+il+ 9.yl +ilg, « y1=0

e
+
RS
<
|
IS
1
)
<

We then introduce some other subclasses of F*,
Fr={peF™:pisclosed }, »F™={x@: 9 F"}
Fr={dp:peF"} «F ={x@:@€F"},



Ahlfors-Rauch Type Variational Formulas on Complex Manifolds 29

F*={dg ; every /¥ has a compact support },
e e el

We now obtain some orthogonal relationships among these subclasses.

Lemma 4.1. The class 5 is orthogonal to *L ‘:, ie @, »yl=0for g e 5 and Y € Ee ‘:

Proof. Using the partition of unity, we can assume that the support of ¥ is a Euclidean

neighborhood of a point. Since dp =0, 3¢y =+ 0@{*~ V= 0. Therefore
d(z¢(k m - k)) 8(0(," 0)+a(0(0 m)+ Z (8(0”‘ 1L.m - k)+§¢(.k,m -k - l)):o-
By Poincare’s lemma, ¥ »* there exist @*” %" such that Z(p"‘ ™~® is represented

m-1
locally by d( 3} @ ~*~). Hence, there is a ¢ which satisfies ¢ =d@ on the support of .

k=0
Write Zqo(k'” V=g -Yand > wPP=y{" ™. We have
prgen-m
[2’*£] = Z Z {((p(pq) *W(n a.n- p))_,_((o(pq) #Win-q.n-p))}
woprasm :
- j]a’(p’" NG VA I N GV
Since dy? "=0,
eyl = 2, 0" [ @) ayy - [[d@; nwT]

>, [f ot ayT - [f @5 AT =0

where § is a regular region which contains the support of y.
The orthogonality is denoted by 1=7c 1+ L ‘: With this notation, it is clear that *L 1 _E_e °:

Lemma 4.2. [f g€ F * is orthogonal to every dy € F then @ is coclosed.
Proof. We have

[dy(_o] = é ff(al/](p lq)_'_aw(pq l))/\*¢§p,q)
T =1p.q
- i22"ffa'(z:wf""' SUTS
N = pra=m
2 22
= ZZ/f{d(Z pkm kA S L pl9)
B ) ptq=m

—(- 1" I)Zw(km k=1 dq Z W)}.

p+tg=m
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Since the integral of the first term in { } vanishes, we get

ZZ( " ffZWU”" E= DA g( 3 *(D_§p'—‘n)

i=1lm=1 ptg=m

ZZ( l)mffzwgkm k- 1>A(8*¢Ek+1m k- 1)+8 (D(km k))

i=1lm=1

[dy,

<
S
]

On the other hand, from the condition, [dy,@]=0 for every 4 with compact support.

Therefore, 3+ @¥ 17 %" V454 %™ P =0, It follows that d + @=0and @ is coclosed.
From Lemma 4.2 and [dl//, (p] =—[* d!// (0] we have the followmg

Lemma 4.3. IfpeF * is orthogonal to every *dy € * £e ‘:, then @ is closed.
From these lemmas we obtain the following direct sum :
Fen«F*+F*+x F~,
=¢ = =0 =€0

Let F,.F ,xF |F ,«F be the completion of F*,F* »F* F® xF* respectively. The
==’ = =¢0 = = ¢ =e0  =¢o0

element in 1__7 is called a family of square summable forms (currents). Using Weyl and

oo 2) 8)

Kodaira’s lemma ; "If ¢ € F is orthogonal to ie . and *F , then @ eF the orthogonal

decomposition of £ follows ,
=F*N+«F*+F +xF . “4.D
= =¢0 =¢0
Write the subspaces
F=F*nN+«F® F=F +F ,F=F 4+=+F .
=h == = = =h =20 = =h —e0

We can verify £€ is the completion of _I_ic *. We denote the orthogonal complement of

+F inFbyF andset F =F nF,F =F NnF . Then we have
= = =co =he =h =¢ =ho =h =0

F=F +F |F F +F
= =he =co =0 =ho
and
F F+*F F +*F +F +*F 4.2)

=ho =¢e0

We denote the subspace of analytic families of forms by

F {goeF rp= —qu}andF {(0(0 }

5. Distortions of families of forms by pull back
For a diffeomorphism f from M to M and QEeF = (M), the pull back is defined by
@ f=(@1°f,@2f), where the (s,f) component of @;-f is
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S Qs x5 dz" Adz™.

ptg=s+t

The norm of @ is denoted by Il Q= /[(/) qo] As for the norm of pull back, in a similar manner
to Theorem 3.1 we have the followmg

Theorem 5.1. Let [, for f satisfy that || <k <k®<1 Then

o P+1 @)+ £ P< 20, C, A2 K5 gl for g e F 3.1
ly f=ix @@ -NHI < kly f+isy -Hlfory €F, (5.2)

Proof. Using usual normalization of variables,
l-FIP+1 @) -£I?

= ﬁ:liosz _/f{l 2 (DxABJKA,|+| 2 (UzABLKA,I }CZ_:

p+q m ptrg=m
s+t=m

< BS T lousk % ATREFHLEED S
pta=m s+l 'mp+’q ",,,
| nly &
= 23 3 lowsl 3 2l e
p+q ‘m p+q 'm
< 2,,C, “’fzucou

The 4 GL is written as Y= (y,,i#y;) and
Yo i ef) =W f=x (Y ) o ), i((Ry ) o f+ 8 (Y o ))),

Yef-ix(y )= fx () ), iy ) < f= (Y= ).

Denote

Yoo f—» (8 ) o) =P ¥k ad ndZ",
Woef+e (Gy)) =D P, a,dz" Adz?,

where
A,B A, B
Yk.a= Z Wia, 8,k 2+ LK 7)),

ptg=s+t

Pra= X WianURE-Lyi= 2 wus{ X URE+LEEZ uii}

p+g=s+t p+rg=s+t u+pv=s+1t
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Remarking that @, 5,= > ¥p,z, ,uﬁ ,f it follows

utv=s+t
lyer-is@NF =23 % fﬂ@m
- - m=0 K, A,
s+t m - "
< 22 > ff malt 3 ufi P
m=0 K, A, H, =,
S+! m M+U ’ﬂ l(+l) m

< Ky -frixy-Nlt
Similar to Lemma 2.1 we have
Lemma 5.1 [@f, =+ ((+ ¥) - )] =@, Y]
Proof. Let ¥ = (y1.y2). Then —=((+ Y) < f) = (== ((#y1) o f), = #((+ W) - f))).

Hence

[@fi=*(Gy)f)]
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i=lm=0 A, B, . = =
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Let f be a linear mapping from F(M) to F (M) which is defined by f*(@)=@-f " It is
clear that (f~")*-f* and f*- (f ')" are identity mappings.

Lemma 5.2. The f* preserves the subspaces £e O,L and £‘, e
1) fE (M)=F (), 2) f*F D)=F i), 3) f*(F (M)=F (.
Proof. As to 1) and 2), note that (d@)-f=d(@ /). For ¢ EL(M) and ¥ E_E% (M), from
Lemma 5.1, [@ of 7w yi=I[@,*(y-f)l= 0._This fOlE)WS 3). - B
Let F b_e a subs;ace —Of F—Who'se element has a vanishing second part as (¢;,0) and
o= (!,1/, 0):[y, @] =0 for every (peF }. Set F F +*F . Since *F F +F *F

=ir’

is orthogonal to F and F +*F F A subspace F of F is called a behavmr space 1f
F +F =F,

For example, L_':{gz((ol,O)eL} and ih'_e:{((pl.qoz);((al,O)GLM,(O,QJg)Eiho} are
behavior spaces. Let P be the projection from F to _I_ih For a behavior space L(M) set.

F (M) ={P-f(@): @ €F (M.
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Lemma 5.3. The F_ (M) is a behavior space on M, i.e.
F (M)++F (M)=F, (M.
Proof. For ¢,y E_E_I(M),f"(@ and f“(lﬂ) are closed. Hence, from (4.1),

[P-fH(@).* (P-f (yNI=If (@, +f (W)l
Using Lemma 5.1,
(@), «f (W=lg. +y]=0.

Therefore, L(M) is orthogonal to *£I(1171). On the other hand, suppose a Q egh(lq) is
orthogonal to F_ (M) +x F (M). For every y € F (M), from Lemma 5.1,

[an]
H
<
~
<
IS

S Yl=P(F ) (@) ry ]

Hence, P-(f ") (@) € F (M)and (f")(@) € F (M)+F (M. It follows that @ € F_(M). Thus
2 vanishes.

Lemma 5.4. Let y € F (M)and § € F (M) satisfy Y -f-y € EF (M)+F (M) Then

ALRARM U] <12zlyvl. (5.3)
U@ -r-ie@-nl <17, (5.4)
g rrivf)-2pl < TE vl (55)

where U, for f satisfies that |in| =ki<k®< 1
Proof. Let 'I’:(Z of+ 1 x (1,1;/ of))/2,@=(£of—z'*(gvf))/z

Under these conditions, observe that
=W f-Y s W f-yI=¥ -y +0.+«¥-y+P)].

Since (¥ - y)=-i(¥ - ¥) and *@ =i®, we have |¥ - y| =|P|. From Theorem 5.1 it follows
that |@| < k|¥|. Therefore

1¥1 < 2zlwland |2 < Ky
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6. Ahlfors-Rauch type variational formulas

Let M. be an n—dimensional complex manifold with a parameter T=(7,,T3,...,T»)in a
neighborhood of zero in m djmensional Euclidean space R™ and f: be a diffeomorphism from
M, to M ; whose Beltrami tensor ,u” ‘> (2,T) satisfies

(1) | 4n] =sup Z 2 | 5 P< k(TP < k(7)< 1

ll+v n s+t m
2) ,u”'f;’(z T) is continuously differentiable with respect to T for almost all z€ M, and
81: ur KA (2,7) is bounded and measurable.
Theorem 6.1 Let F (M,) be a behavior space and analytic families of forms Qr,y’

’“(T) =0 Then

on M, satwfy(p ofr— (p l[l o fr— weF(Mo)+F (M,). Assume that hm

Wt P
2n =
= Z Z Z 4(- 1)s+t+t(n s)ff WIH s ¢2K -rﬁ’aﬂﬂgﬁ:(z’o)

m=0s+t=mu+v=m

xdz® Ndz® - ndzM ndz™
where @°=(p].03). 97 =D QL 5, dz AdZ™ Y =T .W5), W=DV, s dz" NdZ™
Proof. Observe that
Y o fomis (W o fe))r @]

Dol»—

+ie (Y ) -yt

°fe
foix(Yefo) @'l

' fe- ¥ P = Gy
Ly
2 bl

Since ¢* and y* belong to F , we have

£T°f‘r_ I * ('//T°ft) = (l//;r°fr_i* (U/;°fr)sl//§°f'r_ 1.#(W;E°f‘r))
(Wiefotx((BYT) f2), — B e fotx((By]) f1))),

(@, — i (» @O)).

*E:(* @,#E)

Hence, [y fe= '+ @1=2(y o fo++ (GYT) *f2).» 93). By (2.7) and (3.1)

2n

Z Z 2 29 B,,(JK A, L?}t%)dzl{‘/\dim

m=0p+qg=ms+t=m

Wiofot* (Y1) fr)

2n

PN WIA B, (JA'BO,‘*LA B"_),UKA dz" A dz ™.

m=0p+q=ms+t=m

We can write this as



Ahlfors-Rauch Type Variational Formulas on Complex Mamnifolds 35

2n
2 2 X {WTA,B,,(J ,-","‘LA' £)- 2‘/’1;1 _u},UK"Z'dZ ‘ANdz ™M

m=0p+tg=ms+t=m
2n =
0 Hu’—"p Ks _AJ
+ 20 20 2 Wame Uiy Az Az

m=0p+qg=ms+t=m

Denote the first term by y'(T), then

n

lv@° = 2 P2 ff | 2 v Uns+ Lt -2yl e b uii Py
K., A “p+q m
s+t
20 KZ f[ [ 3| 2 WiaUisrlit) -2yl =) F
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Thus

lim 2 fe ¥ ) (@20, Ty, 0)

DD 4(—1)“‘*"”“’ffMu{w?H,su(pSK..,a.. T UK D)

Te= 0 T 0sst=mutv=m
dz"* A de""/\dz_A’/\dE"""+limo%(y/’(‘r), *3)
Tr—
2n

= 2 Z E 4(_ l)s+t+t(n—s)f MU{W?Huf,qt)ZK,,_,A,,_,a«[ luK.Z,'(Z’O)}

m=0s+t=mu+v=m

Az Adz¥ AdZM AN dZN

Corollary 6.1. If y| and @; in Theorem 6.1 are (n,0)-holomorphic forms, then

W fem W P, =4[] wielgr miine 0%y

Department of Mechanical and System Engineering (F. M.),
Faculty of Engineering and Design,
Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585



36 Fumio MAITANI

References

1) L.V. Ahlfors and L. Sario, Riemann surfaces., Princeton (1960).

2) L.V. Ahlfors, Analytic functions. Proceedings (Princeton 1957), 45-66, (1960).

3) W.V.D. Hodge, The theory and applications to harmonic integrals., Cambridge University Press (1952).
4) K. Kodaira, Annals of Math., 50, 587-665 (1949).

5) K. Kodaira, Complex manifolds and deformation of complex structures., Springer-Verlag 1985.

6) Y. Kusunoki and F. Maitani, Math. Z., 181, 435-450, (1982).

7) F. Maitani, J. Math. Kyoto Univ., 24, 49-66, (1984).

8 ) H.E. Rauch, Proc. Nat. Acd. Sci., 41, 42-49, (1955).

9 ) H.E. Rauch, Bull. Amer. Math. Soc., 71, 1-39, (1965).

10) G. de Rham, Differentiable Manifolds., Springer-Verlag 1984.



