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Abstraet

This study deals with meromorphic differentials whose boundary behaviors are
restricted by the real behavior spaces introduced by Shiba, but have no assumption
of semiexactness, and no period condition. We show their extremal properties, and
reciprocal properties of the first, second and third kind of fundamental differentials
with our boundary behavior. In this context we shall formulate the Riemann-Roch
and Abel type theorems on general open Riemann surfaces, which allow infinite di-
visors.
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1. Introduction

Abelian integrals theories on compact Riemann surfaces have been generalized
to those on arbitrary open Riemann surfaces. For generalization the boundary be-
haviors of meromorphic functions and differentials under consideration need to be

restricted. L. Ahlfors? **), who first used distinguished differentials, and

5),14) ,17) .16
others'® 17

scribed by complex form, but their theories are, according to R. Accola’’, meaning-
ful only for Riemann surfaces with boundaries as small as those of the class Okp. By

contrast, Y. Kusunoki®”’, using semiexact canonical differentials, and
12).22),18),19}.21) ,11)

2 formulated the theories in complex form as classical theories de-

others used real normalization, and formulated their theories in real
form; meaningful for Riemann surfaces with large boundaries, and with interesting
applications. For real normalization, M. Shiba'™ introduced the notion of behavior
spaces based on M.Yoshida® ; and showed more extended formulation of Riemann-
Roch theorem for wider differential classes. We use Shiba's behavior space, simpli-
fied by Matsui'”, but leave out the period condition in Shiba's behavior space for

less restriction. We showed that the theories are established by this method even in
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complex form ®'®?: valid for general Riemann surfaces. Although we are mainly
concerned with the complex form with special meanings, it appears that the reai
form is more general on the point that a complex behavior space becomes a real be-
havior space, and has familiar applications, such as in slit mappings. Here we
formulate our Riemann:Roch and Abel type theorems in real form ; differing from the
complex form. We use the first, second and third kind of fundamental differentials
with their boundary behaviors, which play an important role in the theories. We
show the reciprocal properties among them. We also point out that the restriction of
boundary behavior of meromorphic differentials by our behavior space yields the

extremal property of de Possel type.

2. Behavior spaces and fundamental differentials

Let R be an arbitrary Riemann surface and A=A(R) be the real Hilbert space
of square integrable complex differentials whose inner product is given by

'<co, o> =Real part of ffw/\*(f:Re(w. 0),

where *¢ denotes the harmonic conjugate differetial of ¢, and & denotes the complex
conjugate of g. Let A, be the completion of the clgss consisting of differentials of
complex valued C*-functions with compact supports, and A, be the subspace of har-
monic differentials. We call a subspace A;(R) of A,(R) to be a behavior space if the
orthogonal complement Az (R)* of Az(R) in As(R) is i*A:(R) ={i*w ; w €A, (R)}.
Let I, (R)={w ; w is a real differential in A, (R)}, and I (R)={w ; w is a real
differential in A (R)}. Take a subspace J%(R) in I} (R), and denote by I'z(R)* the
orthogonal complement in I, (R). Then I';(R)+i*I;(R)* becomes a behavior space.
For a behavior space A;(R), we have the orthogonal decomposition
A(R) = A4 (R) + g (R) +#A,,(R)
=Az(R) +1*A;(R) + Ao (R) +*Ac0 (R).

For a behavior space A;(R), a meromorphic differential ¢ is said to have A;-be-
havior if ¢ coincides with a differential w € A+ A., on the outside of a compact set.
Let U be a parametric disk and z be the local parameter usually identified with a
point on the surface. For points p, g€ U there exist the C*-differentials {n,}. {1,
which vanish on R— U and satisfy

no=Re d{Tp(z)logj—_q}, D= - R d—”—(i (n=>1),

—p (z—p)"
’__ ‘ Z2— ’ (Z)
7 =Im d{Tp(z)log—Qz_p], T =—1Im md 25 n2D),

where T,(2) is a C*-function,=1 on Up=.{z slzl<p<1), dpl, 1¢g1<p) and=0 on
oU=A{z ;| z|=1}. For a closed Jordan curve 7, take a ring domain U, divided into
two components by 7, and denote by U,* the component on the left hand side of 7,
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and by U,” the component on the right hand side of 7. There exists a real C*-func-
tion f; on R—7 such that £,=0 on R— U,*, and f,=1 in a neighborhood of 7 on U,".
Then n,=df; is a closed differential on R, and set n,/=0. Let , ” be correspond-
ing differentials among these ones. The differential n+*7” vanishes on
(R—U—-U,*) U U, and belongs to A. There is an orthogonal decomposition

nt+*n=w+tr,
where W EA;+ Ao, TE*¥A;+*Aeo. Set ¢’ =n—w=—*n"+7 and 9= ¢ +i*¢". The
¢ becomes a closed and coclosed differential. Hence ¢’ is harmonic on R—p—gq, and
¢ is analytic on R—p—gq. The ¢ coincides with —w+i*t€A,+A,, on R—U—-U,”*
and has Az-behavior. In this way we have meromorphic differentials ¢ = (z.p.0.
¢n=C¢znpy m=1) and a holomorphic differential ¢;= ¢ ,. The A =iA; is also a be-
havior space and we have ¢¢ =z pa. P =Pz mp and ¢ =z, These i, and i,
have A;-behavior.The ¢y, i¢)y" are said to be the third kind of fundamental differen-
tials with Az-behavior, which have the singularities ‘

dz  dz idz  idz

zZ—q z—p' z—q z—p
The ¢n, i¢py’ (n=1) is said to be the second kind of fundamental differentials with
Az-behavior, which have the singularities

dz idz

(z—p)"“' (z_p)n+1"
The ¢,, i), are said to be the first kind of fundamental differential with Az-be-
havior. The finite sum of these fundamental differentials clearly becomes a meromor-
phic differential with Az-behavior. Conversely, we have

Proposition 1. Let ¢ be a meromorphic differential with Az-behavior. Then there exist
Jundamental differentials which vepresent ¢ as follows:

= chk(px,n.m + 2idns Dz mpet chi¢x,pk.q;

+ Zidkid)l",ﬁk.qi—'_ ch¢z.rk + Zidigb-t'.n
Proof. We can choose a finite number of fundamental differentials and coeffi-

respectively.

respectively.

cients, so that

Y= QD - Zanﬁl’z,n,pk— Zidnk(,bz’,n.pk - chjgbl‘,ﬂk,q,l_ Zidkjd)z',pk,q;
is holomorphic. Since ¢ is Az-behavior, there exist a regular region G, enclosed by a
finite number of analytic Jordan curves which are all dividing éurves, and a dif-
ferential @ in A;+ A, so that ¢ coincides with @ on R — G. Then the closed dif-
ferential ¢ — w vanishes on R — G, and we can choose a finite number of differen-
tials and coefficients so that

O=Q—w— 2N — 2idm;
belongs to Ag. Then

Q2= — 22k Pz — 21d sz,

=w+ o+ 2 (wrn—i*n,) + 2id; (0, —1%7,,),

where Wy, —1*Tp = N — Qi 1 (@5, —1%7",,) =1(nj— ¢r.;,) belong to Az+ Aeo. Hence
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@2=1%; belongs to (Az+Ag) Ni*(A;+Ag) and vanishes.

3. Reciprocal property of fundamental differentials

The first, second and third kind of fundamental differentials have some rela-
tions among them which play a role in classical theories. We show these. Let A;=
A={@ ; wEA,}.

Lemma 1. Let G be an open set whose every component 1S a simply connected region
enclosed by a closed analytic Jordan curve. 1f mevomorphic differentials ¢, @ coincide with
elements in Az+ Ao, Az+Aeo on R— G, respectively, then

Imj;oafgozo,
Imj;l¢=lmj;6¥f;af¢=—Imfacllf(/)f,r',

Re fr $=Re fa orp=—Re f Ve,
where AU=¢, AWz =Pz, and 0G is oriented so that G lies on the lefe side of 0G.
Proof. Take vE A+ A, and € A7+ Ago such that ¢ =y, ¢=g on R—G. We

-have
0=AL¢, *@r-¢=<v, ¥ r-0

= itpe=inf [nu=inf, v

Note that fac: Zj;c is absolutely convergent. where G; is a component of G and
1

fao.-(p: acfﬂ:O'
From definition there are differentials wz,, iwz y EAz+Aeo, Tzy, 172, E1*A; so that
iy =ny—wi,+1*7z, and (bi’.r'zﬂr’_wi’.r"l_'i*fi’.r’-
Then we have
0=L¢, i*Pz,7 r-c
=y, *(ny — @z —1*T5y) D r-6
=y, i*n0 r— Y, i*Pz,0 6

:—ImeVAdﬁ'+ImeUA¢ir’

=im[  fro—Im[ Wirg

R-7"

=Imfr'c/)—lmj;cllr5,,'</),
and
0= <¢, *(Z.z—'.r’>R—G
= <U, *(nr'_cai’.r’_i*fi’.r’)>le—c
=y, *n,0r— <V, *drc
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:—-Reff])/\dfr'—{—Re‘fo/\Cb.?:r'
=R f()?rfrd) Ref w..z’rqb

:Reﬁ,gb—ReLG?lf;,rfqb.

We have the following reciprocal properties of fundamental differentials:
Proposition 2. For points p, g€ U(2), a, be U (O (U@ N U () =¢)
Re{qfqu(b) qu(a)} RE{wzab(q) zab(p)}
Im{%;p,(0) — Uspo(@)} =Im{Ts,4,(q) — Tras(P)}
Proof. For G=UU U’ and ¢z .4, $z.as. applying Lemma 1 and residue theorem,
we have

[ Cepapios=—Im [ Copubiar=Im Trosprsa
hence Im 271{ W, 5.0(8) — Urpo (@)} =Im2mi{ ¥z (@) — zas (D)}
For Q[)z,p,q. iﬂbi’,a.b

In[ Upi¢ra=—Re[ Cepabzar=Re[ Veorbora

hence Re 27i{%,,(8) — Urpo(@)} =Re 27i{¥z 2,(@) — V7 .26(®D)}.
Similarly we have the following:
Proposition 3. For points pE U(2), a, b€ U’ (D)

Re ATy (B) — Wi (@)} =Re 9 (U5, (p))
7. dz”

Im{wz,n,p (b) - w.z,n,p (a)} = Im—l’" d—nn{ wf’,a.b (ﬁ)}

Re-1, ddgm{wmw)} Re———{lffima(,b)}
-1 4 Wxnp(a)}—lm— d” Tna ).
ml qg™ w

Proposition 4. For a closed ]ordcm curve v’

Imj;ﬁb:z,np_Re——{w:{r (P)}

Re f Grmp= Im——{w;— »)

Im ﬂ Grpa=27Re(Usy (@) — Uiy (P))

Re [ Gapa=—27Im(¥z () — Uz ().

’

Proposition 5. For closed Jordan curves v, 7

Im j; $zr=Im f; Pir

Reﬁ'¢z_T:ReJ;¢f,T'+ ' X7,
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where the intersection number 7" X y=1 if " crosses v from the left hand side of 7 to the
right.
' Proof. By calculation similar to Lemma 1
0=<{¢x, i*ai,r’%?
= Nr— Wy +i¥7s,, ¥ 9y — @z —1*Tzy) Ok
= <d)rm *n, r+ <9, i*gzir’>k— {1, *n,7r

:—Imfj;(ﬁx,r/\dfy'—lmfﬁdﬁ/\‘pir'

~tm [ fegu,—tm [ fe
:Imﬂ,(pz.r_lmﬁﬁbir’
and

0= < (pz,r, * (Za?,r’> R

= <777_w.r,r+i*fz.r‘ *(7]7’ - a_)a?.r'_i*z_'i’,r’)>k

=Lz, *070 2+ <0y *in',r’>3— Ny *N70r
=—Refj;gbx,,/\dﬂ'—Refj;dfr/\¢;,,»+RedeﬁAdﬁ»

=Re , frdzr—Re ' )frgba? »+Re )frdf 7

3(R—-7") o(R—r.

:Re_/;,gbz.r_Rej;gbf'.r’_T,X T

(R-F

4. Riemann-Roch type theorem

We are concerned with meromorphic functions and differentials with properties
expected outside a neighborhood of poles. We establish a Riemann-Roch type
theorem for such classes. Take a disjoint union V of parametric disks {V;} which
don't accumulate inside R. Let 0, =pipsps ", 0,= q14=qs*** be integral divisors whose
supports are contained in V, and restrictions to V; are finite divisors and set
0=10,/0,. We consider the following vector spaces over the real number field:

MQ/3, ; Ay)=AF ; F is a multi-valued meromorphic function whose divisor is a

multiple of 0p and coincides with a differential in Ay + Ay on
R—V.}
S@; A)=YEMQ/, ; A2) ; fis a single-valued meromorphic function whose
divisor is a multiple of 0.}
DQ1/6, ; A) =A@ ; ¢ is a meromorphic differential with Ag-behavior whose divisor
is a multiple of 0.}
D5 ; Ay) = {o;pisa meromorphié differential with Az-behavior whose divisor
is a multiple of 8.).
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We first point out the following:
Proposition 6. For FEM(1/0, ; Ay) and 9 €D(1/8, ; A,)
2nRe2ResFgp

{1}
=—Zalm [ dF+ZdRe [ dF—Im [ Fo,

where ¢ = chkd’in.ﬁk + Zidnkﬁhx",n.px + Zchlcpf.ﬁk,tu
+ 2lidii 7 st ch¢£rk+ 2.id;gz,,
and V' is a simply connected region which contains the poles of ¢ and no poles of F.
Proof. Let dF=v, (v€A,;+Ae) on R—V and on R—V”’
=0+ 2 (ty+i*ry,) + 2id; (¢, +i* 1y,
where 0 €A, + s, and Ty, 1T, Ei*A;. It follows that
0=<dF, i*@ p-vuv
=L, i*G+ Zcid* (T, —1%T,) — 247 (T —1*T 1) D p-vuv’
= <1J, chi*’l—'n - Zdj*fy,>1z+ <dF, §5> vuv’

= (U= @) + S (dfy— @), ¥ e+Im [ Fo+Im [ Fo

=S¢ [ dF—%dRe [ dF+2nReZResFp+Im [ Fy
Tk i v’

(pi}

where we note that Q= av'gD:O' hence fa Fo and faV,Fgo are well de-

a(v-v’) (v—v"

fined. We get the conclusion.
We may write Im aV,F(DZZTCREZReSF(p. We can define a bilinear form on
{as}
MQ/8, ; A2) X D(1/8, ; A;) such that
W(F, ¢)=2nRe2ResF¢

{pi}
=—2¢lm | dF+2d;Re | dF—27Re>ResFop.
Tk i {g5}
We point out the following: (1) Although F is multi-valued, Rf,s Fo is well defined,
i

because ¢ is holomorphic at p;. (2) Since ¢ has only a finite number of singularities,

2.ResFy is a finite sum.
{gs}

We have the following Riemann-Roch type theorem.

Theovem 1.
- MQ/B, ;A _ . DU/, ; A
dim 22 22— dim Lr oz
S0 ; A D1/5 ; Ap)

where constant functions in M(1/0, ; Ay) are regarded as zevo if deg 0,=1.
Proof. If f€S(6 ; Az) and o€ D(1/d, ; Ay, then ZResfo=0 and | df=0 for
¥

{aqst

every 7;. Hence 2(f, ) =0, and S(J ; A;) is contained in the right kernel of k. Let
FeEMQ/3, ; Ay, and satisfy h(F, ¢) =0 for every €D/, ; As).
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Then for Qsn., 102 ED(1/6, ; AL,
0=h(F, dz,) = Imf dF.

0=h(F. igz,)=Re [ dF.
Tk
Hence dF=0. If deg 6,=0, FES(0 ; A;). Suppose deg 3,2 1. If # is less than
Tk

or equal to the multiplicity of divisor 8, at gj, then for Pzne, i97.muE D1/, ; As),
0=Ah(F, Pzne) = —27rRe!Z)Reng[);,n,q,= ——ReF ™ (g,).

and, similarly, !
0=h(F, i2n) = —27Re %:)ResFigb;,n,q,:-fﬁImF ™ (g,).

Hence F ™ (g;) =0. When the support of d, is not a single point, we have for ¢z

102,000/ D(1/9, ; /Tx) ,
0 = h (F. gb.z?,qk,q;) = 27[Re ZReSng;,qk,q,

{as)
=27nRe{F(g) —F(gn},
and, similarly,

0=A4(F, iz qu.0) = _ZnReZReSFi(pa?.qk.w

7
=—2nIm{F(q,) —F(g;)}. A
Hence F(q:) =F(g;). Therefore F belongs to S(d ; A;).
Conversely, let €D (1/3 ; A;), and satisfy h(F, ¢) =0 for every FEM(1/5, ; A.).
Since F¢ is holomorphic at {p;},
h(F, ¢)=2nRe>ResF¢=0.

{pi}
Hence D(1/5 ; A;) is contained in the left kernel of k. Let ¢ € D(1/8, ; A;) and
satisfy h(F, ¢) =0 for every FEM(1/0, ; A;). If n is less than or equal to the mul-
tiplicity of divisor J, at p;, then ¥ynp, € M(1/6, ; Az) and

0=h(Wenp, ¢) =27Re SRes Wiy pg= —2ERed, (),
(pi}

0=h({¥; up. @) =27Re>Res iwx',n,p[go=27ﬂlman_ (P9,
{p1}

where @ =2 a, (p;) (z—p;)”dz at p;. Hence @n_,(p;) =0. Therefore o €D/ ; A,)

and the D(1/0 ; A;) is the left kernel of #. Thus we can get the conclusion by usual
algebraic consideration.

If a holomorphic differential ¢ coincides with a differential @ in Az -+ A. on
R—V then ¢ — w vanishes on R — V, and exact on R. By Dirichlet principle
llol|<|lwll. 1t follows that ¢ — w € Ag and @ € A;. Hence ¢ = — i*¢ € A, N i*A;
vanishes. Therefore, if 0, is a finite divisor, M(1/8, ; A;) is generated by {¥r,,,
{i¥ 4}, A1<k<y;) and constant functions I and ¢, where v; is the multiplicity of
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0p at p:. Hence .
dim M(Q1/5, ; A;) =2{deg J,+1—min(deg J,, 1)},
where constant functions in M(1/8, ; A;) are regarded as zero if deg §,= 1. Thus

we have

Corollary 1. Ifdeg 0,<oco,

. ) _ . . D1/0, ; AP
dim S(6 ; A;) =2{deg 6,+1—min(deg d,, 1)} dlm—————L’—-——D(l/a Ty

Particularly, if D(8°/8 ; Ap) =D/6 ; Ay) for an integral divisor &,

dim S(6/0" ; Az) =dim S(0 ; A;) +2deg §'=2deg 0'.

Further, D(1/3, ; A7) is generated by {(r.ea), (02 a0a), {Pziat, (P24} and
D(1 ; A;) which is generated by {¢z,}, {¢p.}.

Corollary 2. When R is of finite genus g, and 0 is a finite divisor,

dim S(§ ; A;) =dim D(1/6 ; A,)+2(1—deg 8) —dim D(1 ; A,).

Let Ise (R)={w € I, (R) ; w has no non-zero period along every dividing
cycle}, and Iim (R) =*Is, (R)*. If a behavior space Az C Iyse (R) + 155 (R), then
*Az=A* D * N (R) +1* Ly (R), and Ay D Dy (R) +il4, (R). Hence df; for dividing
curve 7 belongs to Az NiAz+ Ag. It follows that ¢z, and ¢z, vanish. In this case
dim D(1 ; A;)<4g and dim S(1/p**' ; A;) =4. There is a non-constant meromor-
phic function with A;-behavior whose pole is of order 2g+1 only at p.

When Az C Iise (R)+ ilse (R) satisfies the follwing assumption as Shiba’s

period condition'®: —Im> U; a)j; c'd—f;a) A(B} =0 for every w € A;(R), we can
J ) J )

get
A,QDL,QB_L,_(P A;¢} for every o €D ; Ay),

where {4;, B;} is a canonical homology basis of R modulo dR. If real parts of the

periods {L go} and {J; (0] vanish, the ¢ also vanishes.
) j

Then we know dim D(1 ; A;) =2g and
dim S(d ; A;)=dim D(1/5 ; A;)+2(1—g—deg d).

g, ¢>R=~Im2{f

5. Abel type theorem

We now derive an Abel type theorem stating a necessary and sufficient condi-
tion for the existence of meromorphic functions with given zeros and poles, and cer-
tain restricted behavior outside of a neighborhood of their zeros and poles. We
allow an infinite divisor satisfying an added condition. Take a disk Vi whose clo-
sure is contained in V; and set V'=2V/. Let § be a divisor whose support is con-

qi1gi2* * " qGix F
. Further, assume
Didiz® " Dk

tained in V'’ and restriction to Vi be represented as
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that there exists a C!'-closed differential & on R such that

Z2—dqij %
o= leogz_pﬁ on V;

0 on R—V,
|| 6]z-v < 0.
We have the following Abel type theorem.
Theorem 2. The following two conditions are equivalent.
(1) There exists a mevomorphic function fsuch that
(i) divisor of fis 0, (i) dlog f=w on R—V, @€ A+ A,,.
(2) There exists a chain C= 2.ci; such that for every closed Jordan curve 7 which does

not meet V

(i) RBL¢£T(:RGZL1,¢£7’> is an integer,
(ii) Imﬁ¢5,,=0,

where ¢ij is a Cl-curve from py; to qij in Vi
Proof. If (1) is satisfied, by residue theorem

_/;¢57=ZReS(LTf5,leog Ji)

=1 [ g —__1 -
—_ Zﬂi ava'rdlog f—' 2ﬂ'i Z Ve (log f> be.r-

Hence by Lemma 1,

Re fc ¢5,,=—2—1ﬂ-1m2 fa Vk(Ing)‘;bi,r

R _1
—Imznfrdlog = 2T[frdargf,

and this is an integer. Similarly

f;qb;,,: 2.Res (@7 dlog /)
__1 2 _ 1 ; ,
= f;vllfx ,leog f= ZHZLVkl(logf)(pz.r-

271

Hence

Imj;gbx,,:%ReZ‘f;w(log Noz

_ _p. 1l __ 1 _
- Reznf;dlogf— an;dloglfl—o.

By the orthogonal decomposition let represent

0—i*0=w+r,
where W E Az+ Avo, TEI* A2+ *A0o. Set ¢'=0—w=1*0+17 and ¢ = (¢’ +i*¢")/2. The
meromorphic differential ¢ coincides with.an element in A+ Ag on R—V, and has

the singularity as 6.
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Rez—mfgo—lm——ffp Im v zr®
:ReZResW57¢=Re_/;¢5,,.
Similarly

Imz—ﬁf(p——Re—fgo——Re— Vlff;,,go

=Im2Res W;_,(pzlmfcdzar.

By assumption (2) Re—lego is an integer and Imi.fw vanishes, Then exp(fgo)
2mid 2midy

=fis a meromorphic function which satisfies the condition of (1).

6. Extremal property of meromorphic differentials with certain boundary behavior

The meromorphic differentials treated in this paper have certain extreme char-
acters. It is reflected in the coefficients of the Laurent development about the poles.
Take real C'-closed differentials 7, 7, such that

-1
‘Re d 2 bu(z)™ Vi,

7]l= n=-ng
0 R-V
-1
Imd 2 bulz)" Vi,
N2= n=—ng
0 R-V

where Vi'=Vi,,= {2z ; |2:l <7.<1}. Set n=1n1+1in,. Consider the following classes
of meromorphic differentials: '

={¢: Re(—0) ELR+TW(R). @ Pav<Im [ ¥,
Q. = {</J : Re (¢ — 1) coincides with a differential in I3 (R)* + *I (R) on

R—V and has a finite Dirichlet integral on V, (¢, w)R_VSImfavd)(ﬁ},

where d¥=¢ and dD®=¢.
Assume that y=1n;+in; has a finite Dirichlet integral on R— U V,/.
For n,+*n, there is an orthogonal decomposition
m+*n.=w+t+wet+*7,
where wE Iy, €T and wo, T0E . Set ¢'=n,—w—wo=7+*7o—*1, and
@nr = @ + i*¢’. The @, becomes a meromorphic differential with Az-behavior,
where A, =TI +i*I;*
Lemma 2. For € Q. (¢p=d¥ on V)

<¢). (pn;)R—V:_z‘];VReWIm(p”J.
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Proof. There are differentials 6 E Iy, 60E [, so that
Re(¢p—n)=0+a,.
It follows that
P, Qr?r-v=4P—1, Oz’ r-v
={o+00+i*(0+00), T+*To— N +i* (c+* 70— *N2) D p-v
={o+00+i*(o+0y), T+*ro+i*(+*70) D v
=2{0+0o, T+*1) g-v=—2C0+00, T+*T)v

=—2Refav(¥f—h) r—10).

where dh=17. The h is constant on every @V} and *t— ro="*r— 79+ 1, =Im¢,, on
0V. Hence

(P, Ppzdr-v= —ZfaVReWImgom.
Lemma 3. For 9 € Q" (@p,:=d®, on 0V)

<(p. @n,x)R—V:_Z‘j‘avReQnIm(p.
Proof. There are differentials vE Iy*, v, €I, so that
Re(p—n)=v+*vo0on R—V.
It follows that
<o, QDm>R-v= {p—n, ¢n,x>R—V
= {v+*u,+i*(v+*v0), M1—w—weti* (N —w—we) dr_v
=Lv+*v,+i*(v+*vy), —w—wo—i* W+ wy) D r-v
:2<U+*Z}o, —CU—CUO>R_V:—2<U+*00, —Cl)—a)o>v
- —2Refav(q),,—h) Cio—py).
Since *v—vo=*Re(¢—7n) =Im¢ on 9V,
Q. Qnzdr-v= —ZJ;VReQ)nIqu.

Note that @,—n=—w—we+i*(t+*7,) and it coincides with t+*7o+i* (z+*1)
on R—V. Therefore ¢,-€ QN Q"
Let denote ¢ €EQ,U Q,* as follows
-1 oo
0=d] = bule)™+ Zbu(@) "]

n=—nk n=0

on V. We have
<(P, §0>Vk.1—Vk,r

—i f
8(Vea-Viry
=i f
O V1=V p=—nim

=2 Bl ()= 1)+ Slb (9P A - ))]

mbnkﬁ (2) "—(Z_k).m—ld_zk

MBricbmi (1) (20) ™" 1d 2,

| Ms
||I M3 III M8

nkm

M

227(() "= D{ Sl +r* Srlbu(o)1
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>47(() -2—1)r"z_*:ln|b_nk||bnk(go)l.'

Hence

S S nlba () 2<

1
——=2XQ, O vir-vi, <0
& n=1 2r(1—r%) & . @rv-ve

and

Z %nlb—nk”brzk ((p) l S;Z <(Pv (P> Via-Vir < 0.

k n=1 Ar(1—r?) «
We set
Nk
]((p) :Rez an—nkbn[c ((p)'
k n=1
We have the following extremal property of the ¢y s.
Theorem 3.

f(d)) S](@n,x) Jor ¢E @z,
J(p) 2 J(@nz) for o€ Q" .
Proof. For ¢, ¢ € QU @;* let us denote them by d¥, d® on V..
Then we have
6Vk,rw'd—qj

fa S 3 mbu(d) b (@) (20" (20 ™Az

Vk.fn: —ngm nk

[ 2 5 mbu@bm@r Gz

Vern=—nxm

=271 3} nbue() b (@) 72"

where bk () = bux () = bpy for n<0,
vrdo

Vir

by () bk () (2)™ (2) ™ 'd 2,
mbrzk (¢’) bmk ((0) (Zk)"+"‘“dzk

=2ni"g”nb_,,k(b,,k((p) — b ()
and

_ 1 Y A
4j;mRew1mdq>— ij;v”(ll'-l-llr)(d@ d0)

—47Re{ b 1t b (9) — bue @) + 5 nbuu( b7,

n=-—nkg

Hence

VAT=—27i > 0| b () 277,

Vs n=—nk
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¥d¥=0

aVi,r
and

A Re¥ImdU=4r 3 nlbu ()27

Vir n=—ng
=—2Im v
Vs
Particularly
4 Re(¥— @,)Ime, »
Vs

= 47Re | &bk (b (90 ~ bk @)+ E (b @) —bur 91D buln. 7},

4faV”Re G, Im (@ — @y.2)

=4rnRe { S;nb_nk (bnk ((P) - bnk ((an)) + %nbnk ((Pn.z) (bnk ((0) — buk ((017..1:)) 72"} .

For ¢ € Q:, 9 € Q,", by definition
(D, P r-vy =<, P> p-y+ <&, $>v_y,

glmj;vw—lm ng=ImfawwE?f

aV~-Vy)
=27r§ {nsnlb_nklzr'z"—nilnlbnk(gb)|272”},

{o. §0>R-Vr:_ <o, (0>R—V+-<¢’ O>v-v,
<Im fa 0G—Im fa o, 0F=Im fa T

=2n2{§3n!b-nklzr‘z”— flnlbnk(qo)lzrz”].
k ‘n=1 n=1

and
<§Dn.:, ‘Pn.x> R-Vr

=2r2, { > nlb—nk|27’_2n_ 2 n’bnk((Pn,x) |2p2n
n=1

(]

k “n=1
Hence
lil'l;l{<¢’. @ r-ve— {@n.z, Pr.2? R-vy)

=m27 3 3 572 (| b (0.0 12— bk ()2} =0

r—0 k n=1

Similarly lim {<¢, ¢>r-v,—{@nz. an,z>R—vr)=0-

r—0

For ¢ € Q.. ¢ €Q,*, by Lemma 2 and Lemma 3
<¢)_(pr1,1- (07;.1>R—Vr

- 27[Re§ { n;klnb—nk (bnk ((pn,.r) - bnk(¢)) + %n (bnk (¢) - bnk ((Pn,.r)) bnk (‘Pn..z) 7271)} .
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<§0_ @n.z, ¢n..t>R—Vr
= — ZTIR('Z‘%: { nzklnb—nk (bnk((p) - bnk(gon.:t)) + i nbnkbnk(fpn.t) (bnk((o) - bnk(@nz))rzn)}.
n= n=1

Hence

lll'l;)l(ﬁb_ Doz wn.J‘)R—Vr: _27Z.U(§077.I) _j(¢))
and

lirrg(qo — Onz Onz? r—ve=—27{J (@) —J(¢r.2)}.

It follows that
OS”(/’_(Pn.x“zzling<¢_¢nm O— Q) r-vr

=1im,{ <¢, ‘/J>R-Vr— <‘Pﬂ.x~ (pﬂ.1>R—Vr_2<¢)_ On.z, (pn.r>R—Vr}

r—0

= 47I{j(§0r/,.r) _](d)) } .

and

0< ”90 - (,0171”2=47f{/((,0) _](an.z‘)}-
Thus the statement follows.

Department of Mechanical and System Engineering,
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Kyoto Institute of Technology.
Matsugasaki, Sakyo-ku, Kyoto 606
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