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Abstract

We shall investigate the change of function-theoretic quantities as a
Riemann surface deforms smoothly. As a smooth deformation, we consider
Riemann surfaces with conformal structures decided by Beltrami differentials
depending differentiably on parameters. Function-theoretic quantities are
often represented by meromorphic differentials with specific kind of boundary
behavior. We show here that their differentials vary differentiably and obtain
variational formulas of function-theoretic quantities. We take up a recovering
deformation as a quasiconformal deformation and apply our results.

1. Introduction

We have been investigated quasiconformal deformations of Riemann surfaces
whose conformal structures are decided by Beltrami differentials holomorphically
depending on a parameter and given variational formulas of various function-
theoretic quantities, which are represented as inner products of meromorphic
differentials with certain boundary behaviors. In this paper we consider them in
the same frame but under weaker conditions. As the quasiconformal deformation
we take up Riemann surfaces with conformal structures given by Beltrami differen-
tials which have the second Fréchet derivatives with respect to a parameter, We
simply call this a C®-movement. We first show that meromorphic differentials with
certain boundary behavior have the second Fréchet derivatives under a C*-movement,
It leads us to second variational formulas of various quantities, They have the
same form as Taniguchi gave for Green functions. At last we deal with recovering
deformations as Schiffer’s interior variations or pinching deformations.

2. C?-movements of Riemann Surfaces

Let R be an arbitrary Riemann surface and consider Beltrami differentials
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©(z, t)g—z on R with a real parameter ¢=(¢,, ..., ;) varying in a domain about 0€ R*,

From the Beltrami coefficient x(z, ¢) we get another Riemann surface R! with the
Riemannian metric ds=2(z)|dz+ u(z, t)dz|. We obtain a family of Riemann surfaces
{R*} and call it a C>-movement if the Beltrami differentials satisfy the following.
i. pu(z,t) is measurable, x(2,0)=0 and ||x(z, ¢)l|=ess sup |u(z, H)I<1,

ii. There exist Beltrami coefficients p;(z,¢), ¢:;(2,¢) such that

limi

7 lee(z, t+h)— p(z, ) —h;p(z, t)I|=0,
hi—0 23

tim-L iz, £-h )= ez, D=y (2, DI =0,
hj—07;

where (2, 1), #:;(2,¢) are bounded measurable and for real %; and (O, ..., 4;, ..., 0)
£ R"™ the same notation %; is used for convenience. Let f, be the quasiconformal
homeomorphism from R to R* with the Beltrami coefficient x(z,7). We express f,
sometimes as {=f,(z) in terms of respective generic local parameters z and ¢ of R
and Rt. Then p(z,#)=¢;/¢.. The composition mapping f;..of, ' becomes a quasi-
conformal mapping from R’ to R'*" whose Beltrami coefficient is

p@ t+o)—pt) &
1—p(z, Dpulz, t+7) &, °

v({,7)=

3. Fréchet Derivatives of Meromorphic Differentials with
Boundary Behavior

Let 4 be the real Hilbert space of square integrable complex differentials whose
inner product is given by

<w,0> =Real part of Sga)/\*E:Re (v, 0),

where *¢ denotes the harmonic conjugate differential of ¢ and s denotes the complex
conjugate of ¢. Let A, be the completion of the class which consists of the
differentials of complex valued C=-functions with compact supports and I, the
subspace of real harmonic differentials. For a subspace I', of I', we denote the
orthogonal complement in I, by I/}, by *I', the space of harmonic conjugate
differentials. For a differential w in A(R), wof, ! denotes the pull back by f,!
of w. Let I'.(R*) be the orthogonal projection to I'y(R*) from {wof,!; wE(R)}.
Set A, (R)=T",(R)+i*I' (R} and A (R)=I,(R})+1*I"(R*)L.

Let the support of a Beltrami coefficient x(z,#) have no intersection with a
neighborhood V of the poles of a meromorphic differential ¢° and assume that
there exists a meromorphic differential ¢* on R’ such that ¢fof,—¢°E A (R)+ 4,,(R).
Now we recall the following Lemma.®

Lemma 1. For differentials w, ¢ on R

(@sf ™Y, —*((*0)of ™ Nt = (w, 0.
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By this lemma, if s E*I', (R}, for any wET(R?)
(w,*(@of " Nr:=(wof, *a)r=0.
The oof,! is closed and oof, 1€*I (R +1I,,(R?). Therefore if wEA(R)+ A,,(R),
then wef, '€A(R)+A,,(R'). If the other ¢* satisfies ¢'of,—@°E A (R)+A,,(R),
then '
tof,—¢tof  EAL(R)+ Ae0(R) and @' —@tEA(RY).
It follows that
gt — @t IF= <@’ —¢*, i*(d* —¢') > =0.
Hence the ¢‘ is uniquely determined on R’. This ¢* is differentiable with respect
to ¢t in the following sense.
Theorem 1. There exists a differential ¢,*€ 4,(R")+ 4,,(R*) such that

li of T — ¢t —hupyt||=0.

kim0 B
Proof. Set

w(h)={p**hof tanof T +i¥(@tHhio franof ")} /2
o(h)={¢* o franof ' —*(@t+ Mo framof ™)} /2

Since w(k)+0a(he)— ¢ E AL (R + Aeo(RY), We have |
0=<wh)+o(hy)—¢", M wh)+olh)—¢")>

=<wh)—¢ +o(hy), o(h)—o —o(h)>,
and ||w(h:)—¢tl|=[la(k)l.

From o(h)=w(h (¢, h‘)g—g’ we obtain

“w(hi)”R‘—V‘S lgtlRe-ve  (VE=f,"1(V)),

=l (C hy)l|
and

lwtrd—gtl=lloCholl s L&A 4150y,
&, 2D

1 — — (Z’ t) Cz
Write ei(h,-)—;z(z,t-l-h,;)—p(z,t)—htpi(z, ) and U{(C)—I_LI;(WE,

Then we have

. D(C,h,‘)_ '

Jim |40 o)

=1lim (1—|#(Z,t)|2+ht,l!(2,t)#i(Z,f))ét(ht)/hz'l‘htﬂ@,t)ﬁt(zyt)zEz
holl  (L—=lpe(z, OF — p(z, Y Rspeaz, ) +e(RONA— (2, O ¢,
=0,

It follows that
a(k ;)
Shm{”(w(h) gy e O 4 “+||¢ e~ v

IID(C,]Z()“ ”QS'”R‘ " (C ht)
—_— — h‘

lim
hi1—0

—p©Ss “

it

=lim
hed 1—[v(C, Ay
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On the other hand,
H w(hy)— ¢ _ w(k)— ¢t o(hy) _ o(ky)
'y k; hy ke I
Hence {o(%:)/h;} and {(@(h;)—¢")/h;} are Cauchy sequences. Since
(why)+o(h)—¢")/h: belongs to 4,(R)+A4,,(R"), there exists a

6it=lim hi(w(hg)+o(hi)—¢')eAx(Rt)"'Aeo(Rl)-
1> i

This is the differential in the assertion.
Remark 1. We have the following representation :
U(hi)

F—i*p,f=2 t1de=21i
i —1gs =20, dl heo g

d¢ gz t) & d¢
— t —_— = T
_2(?5 Ui(C) dc 2¢ 1—|ﬂ(2, t)lz ¢, d¢ ’

where ¢,t=g,0 d¢+44dC.
Next we consider the differentiability of ¢;°.
Set
0i(h )= (PFHAIE )+ Byt HRIUE ) — B4+0)dC,
oi(h )= (P HRE e+ ¢ it+1u,1(f;)f —:t)dC,
where Gyt HHI= @+ h0dC  + g tHRIAC .
Then ¢ +hioftinsof ' —di' =wi(h)+o(h;). We first show the following.
Lemma 2.

1imﬂm=¢_z,o izt &
a0y S T P

Proof. Remark that

t+hIO(C )
@h—(cf)c =4 tt+h/,0”—(cl;—hi@ X
; 5

— 150 iz, ) +e;shp)/hy é
B @ D —1Ga, Dk g (o D) e ) Gy i

This implies the conclusion.

Next we have
¢ HhIC e — byt

=(tthi gy s iRy (£9). (Cy)
S I A T PEn =9 E i W ()
1 gt { piz,tthy) _ p(zt) } Ca @
1—|ﬂ(2,t+hj)|2 1—|u(z, t) (Cj)z ()N
e piz, ) € Ex &
+Q 1~|ﬂ(z:t)|2 {(Cj)z (C/)C (o }

For the third term, we remark that

Eccz=zz_EEEz= _,U(Z, t)Z_CC:,
zcczzzz_zfzz =1 —Ech#(Z, t)=1+u(z, t)lzzccz,

1 dze—_—rED
hence z(Cz— l—lﬂ(zy t)IZ and Z(Cz_‘ l—lp(Z, t)lz ’
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We have
(Cj)(Cz = (Cj)z(zccz—l— ,U(Z, t+h'j)ECcz)
, ¢ !
=) {1- et e e G-
It follows that

Ces _ g_ {1__#@_(;2,,, iz, t)+s,-(h:)>}

(> 1—|p(z, 1)
and '
_];{i (CJ)CCl ’ _ (CJ)CCz }_ P(Z, t),uj(zv t)—/l(zy t)/‘tj(z) t) |
hj (Cj)x (Cj)z 1—|/1(Z, t)lz
e (hu(z, 1) —e (hyulz, 1))
Therefore
1 [EEh) ¢
NI BT V2 A\ Z ST &
IE-IR) hy {(Cj)z(C/): Cx}
— 1 Al s ) _ . —— &,
- I—IIU(Z, t)lz {,U(Z, t),u,(z, t) ,tl(Z, t)/”j(z, t)}?;

This convergence is given in the sense of the supremum norm. For the second
term, we have

p#i(z, t+hy) 22, 1)

1—|p(z, t+hplF 1—|p(z DI

_ hypii(z, ) tey(h )+ pz, Dlpz, k12— paz, t+h;)lﬂ(z )
A—|p(z, t+h DA —|uz, t)l”)

and

l#(z, t+hj)|2=|ﬂ<zy t)|2+hj{#j(z: t)ﬂ(z) t)+ﬂj(zy t)/j(z, t)} )
+ {e;(h ez, t+h ) +e (b Ppz, t+h )} +h 2z, O1F—e (b DI,
where e;;(h)=pz, t+h)—pi2,t)—hpz, ).

Hence »

hmi{ piz, t+hy) pdzt) }

a0 By \1=lp(z, t+R )12 1—|p(z,B)?

rizt) | ez, Dz, e, O+ p(z, e,z D D
1—|p(z, D)|? (1 —|plz, DI®?
This convergence is also given in the sense of the supremum norm. Thus we have
Lemma 3.
lim—(¢,tt+”s1 — ;!
h}—r{}) %, (¢i Ce—g:h

t ¢ #4(2, t)/lj(z Dz, t) __C_z_
{os0ute, 09 wute, 29 LELALE R DN Lo

N 1—|#(Z,t)|2
In a similar way we obtain the differentiability of ¢.’.
Theorem 2. There exists a differential ¢,;*EA,(R*)+4,,(R*) such that

Lim gt ohiefrvnse 7= g —h g I1=0.
hyj—
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Proof. From Lemma 2 and 3, it follows that {o«(k;)/k;} is a Cauchy
sequence. The wi(h)+ai(h)=¢dtMofrinof, 1~ belongs to A.(R")+A4,,(R*) and
(wi(k;), ai(h;)=0. Hence we have

0=<wk)+aihy), i*(wdlh,)+o:(hy))>
=< wih)+oihy), wlh)—ah;)>
=[lw: (2 DII2—llo(k DII2
The {wi(%;)/h;} is also a Cauchy sequence.
Set hmt—rﬂi— =¢,,d¢, llmL(hL)' =g, ¢

hi—0 hj—0 h
and ¢,,* _9_5,,, °d¢+ @y 5 1d¢. The ¢,,* belongs to A,(R*)+A4,,(R') and satisfies the
assertion.

Remark 2. From Lemma 2 and 3 we have

Pas"! :m{ﬂi"oﬂj@, B+ ¢z )+ ¢tuyz, t)}%

‘iz, B (e, DG D=

2
AT o 2

4. The First and Second Variational Formulas

Let a meromorphic differential ¢*=¢*d{ on R* satisfy the same assumption as
that of ¢¢. We know that various function theoretic quantities on R‘ are repre-
sented by <g¢fof,—¢° ¢°>r» We can obtain variational formulas of those
quantities by the results in Section 3.

Theorem 3

<¢t°f —@° ¢°>R <ot ¢1>R¢

—Re 188 $'gt iz, HC 2z AdE.
R

Proof. By definition and Lemma 1.
i tof — 0 40
ati <¢ ft ¢ ’ ‘/) >

_1_ t+hio o /0
—}E—rﬂl}h <o ¢ fH-h( fh ¢' >r

=lim <SSt [IZ 8wy, 1> e
Ig—0 hy
=< ¢, —i*(@Oof D> Rt
Since ¢;* and ¢*—¢°f,”* belong to A, (R*)+ A,(R?),
<@, —1M@Of > p=< B, PPl f D—i*Pt> re
=<4, ¢' >R
Next, by Remark 1,

<@, P> R=<¢,dC, J*>re=Re lgg BT I E —d% ¢AdC
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~Re ISS St pi(z, Az AdE.
KX

In a similar way we can find the second variation.
Theorem 4.

L tof. — A0 50 — BT
6t16t¢<¢ ft ¢ ’ ¢' >R’—<¢N ’ ¢ > Rt

=Re i{{[ @eouie 40 mta tigredznaz
R

+ SS St (2, Az Az
R

e £3(2, Do y(2, Dz, 1) L, _}
+2SSRQ <£ l_lﬂ(Z, t)lg Gz dzAdz .

Proof. By Theorem 3 and Lemma 1,

(i tof A0 0
0t',0ti<¢ Se=9% 9°>n
=i}in(1)hi{< Gotthi, PHEBI> pony— < ¢4, W>R‘}
-0
) t+hio of Sl— gt
=tim { < St S el B (G frnef > R
i
Since —i*(@¢Hthiof ppnsof, L — PP ET* A (R +*A0(RY), the second term vanishes.
2 —_— J—
Therefore 8t66t <@lof,—@° ¢t>r=<g¢i’, ¢*>r:. By Bemark 2, we have
70t

<¢1’Jt’ W>R‘=<£i1t’ldz» W>R‘

£,0 80y gt T
:Rei{gg (&s ﬂj+12—j|pl/:z+g #15) g‘—g—-‘—dmdc

C -
Se ge ndE)
;N ¢}

SS 2_@‘,“#’.; ot
Rt (1—|p]?? =
From d¢ Ad¢=(1—|x|?|¢,/2dzAdZ, we obtain the conclusion.
Remark 3. For the first term of the variational formula, we have various
representations. In fact

Re ig g ¢,;"°¢‘pJC=2dz/\d§
g =

. ¢ 3 % 01aC)
=Re lggm?im?——l—ﬂl—;lz— _a‘dC/\dc=<Qi"°dC, 1*@1"‘dC)> Rt
=< ¢iz’ Q,"ldE> Rt= <¢tz’ i*(qb,—‘ —ibj"odC)>Rt

=<¢i‘: Séjt’odc>R‘=%<¢iz, ﬁ>v

and

Re 1SS gjt,o£t#tgz2dz/\d2=%<¢j‘, ¢_i‘>=%<¢it’ ¢5t>.
R
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The first term becomes Re 1{58 (@0 +¢ ;9 )iz, 1)5,2dz Adz or
R ?

1 _ —
7{<¢iy‘ Gi>+<gpd, piE>).
Remark 4. For the third term, we have
ZSS ?t‘/it iut,tlf:lllxz ‘lzdg/\dkggk (¢j"1¢"+¢°¢¢t'1)#¢ﬁ|@|2dz/\d5
R - = - T

and some other representations can be found using the same manner.

5. Recovering Deformations

As an example of a C:>-movement we will consider a deformation by recovering
of local neighborhoods.

Let r be an analytic Jordan curve in R and take local coordinates {¢s, 25} =1,
such that

d(r)={24; |z,]=1} and (/:z(p):—l— in an annulus which contains y. Let

D1(D)
wy=wy(2:, 1) be a conformal mapping from {z,: @<|z,/Sa™!} to an annulus D,
such that
bp< inf |wy(z,, I inf |w,(zs, IS sup |wi(z,, 1)< .
lzzl=a |zp|=a™? |zrl=a"!

Denote A,(ce, bp)={2,; cs<|2,|<b,}, and B,(c,, a™') the-annulus whose boundary is
{wy; lwel=cp} and {wy(z:); |2:]=a7'}. We can obtain a recovering surface R’ as
follow :

2 2
Ri= (R— ,Hlﬁbk-l{zk: bk§|zk|§a—1}) U kLJIBk(Ck, a™t)
where w,(c,<|w,|<b,) is identified with pER if ¢ (p)=w, and wy(z,, t) (@a<l|z)|<a™?)

is identified with w, (zi’ t). Now assume that there exists a quasiconformal mapp-
1

ing f, from A,(c,, a™) to By(cy, a™) such that
wy(zy, t) on A1, a™)
.ft(zk)z{ Bk * ,
Zk On Ak(ck, bk)
and the Beltrami coefficient p(z,, #) of f.(z,) satisfies the assumption in section 2.
The f, is extended to a quasiconformal mapping f, from R to R‘ by setting an

2
identity mapping on R— H lA #(ce, @™1). We can give some kind of f,. We recall the

following fact.
Lemma 5. Let @ be analytic on {z: |z|=R} and the Laurent expansion be

i a,2". Let Hy be the harmonic function on {z: r<|z|<R} such that

o _{Q on |z|=R

10 on |z|=r"
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Then H, has the following representation :
Ho=bolog1Zl 4+ 31p.2n+ 37 27,
re 730 n3:0

where b0=a0/log§, for n>0

b . RZnan b _ _r2na_n
7 R2n_yon? - Ren_gon?
o= Bon _ —R"ra,
n Rin _y2n? Con™= Rin_gtn ?

We have harmonic functions H',=Hgq,+z,, h*,=Hg, on A,(bs, a) as in Lemma
5 for Qi(z.)=w,(2,)—z;, Quz;)=logw,(z,)—logz,. Set H?,=z,exph?, and
wi(zz) on Ayla, a™)
Slha=1H (2,) on Ayb,, a@) .
Z on Ailcs bz)
When {w,(2,): a<|z,/<1) contains a circle {w,:|w,|=d,} we have harmonic functions
H¥,=Hg+w,, h*,=Hq,on {w,: b,<|z:|<d,}, where Qyw,)=2z(w,)—w,,
Q.(wp)=logz,(w,)—logw,. Set H',=w, exp A,
2 (wy)  dp<|lw,l|
= H y(wy) bp<|wy|<dp.
W Cr<|w,|<b
If the norms of the Beltrami coefficient of these f%;, g%, are less than 1, these are
univalent and become quasiconformal mappings. Set f*,=(g%)"' ¢=3, 4). We will
apply these to Theorem 3. Hereafter we often abreviate suffices as z=z,,
Hi=H¢,,
For i=1, 2 we have
pwlt=HiHY,—HGH,, on Auby, a).
For i=3, 4 note that
E; — 2z
I P P L P
_ @a),(| 202 — |23l D) — 22|20 >~ 25|y
(|2]*—|2a]?)?

wep, = — Ei120 |2~ Z5]*) + 25|20 | — [ za] sy
” (2w*—lzal*)?

W,

Wty

and
o (HinHG—(H'5),H
910 (HYF—HZR
where partial derivatives with respect to ¢; are those for functions with independent
variables z and f;, Thus we have by theorem 3,

Theorem 5.

i of . —d0 o
atj<¢t f& ¢1¢’0>R
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L2 Hi_tth —H-Ht,; _
— Lot z z z zty
Rel X=} SgBk(bk G)Q f IHiz|2—|H¢ZI2 dw Aduw
2

; ore H D, Hig—(Hipe H _
=Re 1"!2:}1“‘4’2(%“)_ ¢ ¥ EREE g dw Adw

Remark 4. In a bordered surface, when {z;: |z)|=a&"'} corresponds to the

border, this gives a boundary variation if we take b,=c,=a.

Remark 5. When 7 is homologous 0, this gives a Schiffer’s interior variation.?”
At last we consider a pinching deformation. When w,=1+5,#))z,, Theorem 5
represents a pinching deformation and the formula for ;=2 is useful.¥

have
AC
Q=log(1+s(@), h= A(t)log|Z|’ Hez <Izl) i

where A(#)=1log(l +s(t))/log%. It follows that

_ |Zl>“’(‘)( A®) - _A®) (IZI A0 z
Hz—(b 1+ 2 ), H;= 3 b) =

L - A'®) (12|\P 2
H;H,—H,H;=—>* 5 ( 2 ) =

| z |) —=2iImA()

/7, — o/ i —_— _Zi}_
AW=5®/1+seNlogL, Z= ( : A

- = () a2+ ampe-1aa

(' z ') "B /0g2,

where E(#)=1logZ +log|l + ()|

b

Hence
HH,—H,H: @)
|H 12— |H:2 21 +s@)E®)

For ¢'=3}a,w", ¢'=>3Ib,w™
SS @'t i 2z Nz
Ab,a)

S
2(1 +SENEWR) )aw, n+swia

/(t) |1+s(t)le(2x L )
mg So Z,‘anbmr”*’"* gintm+2edyda

_ 2rs'(t)
U T 5 naoe_p Lnbme

Therefore we have
Theorem 6.

glls

zanbmwnm%dwx\dw

°fc_¢°, J‘>R

1
=Re 27 Z}l 15 s,0) at,

S/e(t) E an 2 (b, £ (D).

In fact we
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Set sa(t)=1+s:()A+5:(¢). Then wzz____szgf) and

1
200wy dws= — 3@, o(t)ss(¢)* 1w, " 2dw,.
Hence we have
An2(t)=—a _p_5,1(8)s3(£)™"", (resp. bno(t)=—b_n_o1(t)ssE)™ D).
We can often assume that the Dirichlet norms of ¢° and ¢¢ in Ayb,, a) are
uniformly bounded with respect to f. Since

|° 112 Axde.a) =27 23| @n, x(O)I*(@***2—(b,)"+2)/(n +1),
[@n, ()| (resp. |b,,())) are also uniformly bounded with respect to . If s3(¢) tends

to infinity, then @, .(¢) (resp. b, :(¢)) converges to 0 for n>0.
For the second variation we have

_H:_ A®) =z

H, 2+A@ z’

__244) =z 0A®)
MTRTAQY z ( ©="5, )
#es {(Z-I-A(lf))2 @+A®) }_ (A”(t) afﬁh)

pigHE 24,2+ A@)—44DAE) w ( X(t) w)
2= H:* 2+ A@®1P—-|A®NC+AER) w\ 4EE#) w
o Al A 44,A DAG) z_v(= 40 ﬂ)
(HP—|H??  (2+A@P—[AD2+AR) w\ 4E®) w/’

It follows that
iggg@‘ (pﬁ@&)ﬂ,zdz/\dz

|el?
=n(XO+2YE) 33 an®ba®,
where X()=2log % (4,,)-25 020 ),

Y(t)= (log %) *AOA OAD/ @+ ADED.

A =(s;(1+5)—s5,)/1 +.<>')2logi we have

From A;=s;/(1 —I-s)log 5

b’

X+2v=2log 4 {4, + 4.4, (~2E+ Alog 2)/Ee+a)
=210g%{A1,—A1A,10g%/E}
=2{s;;(1+5)—s;s (E+1)/E} /(1 +5)3,

Therefore
—%{<¢it: §[)—jt>+<¢i‘, ¢_jl>}
4 (27tReZ 1 _ 0, ® 5 ansb (t))
~ o1, 1 1+s,(2) at g AN STk
1 O%,() 1 Bsy(t) 85, E(t)+1}
~2rRe El 1+, { 0Lt 1@ 0t 0t ED | nesmo o ObmalO:
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Thus we have
Thorem 7.

TI<pe, B> <9, 57>

_ < 1 0s,(8)
=2tRe X 75 os,

x{g— 51 s Obma®)+
jn+m=—2

1 0s,(t) 1 }
TS GNED) 0t nimt_s et @ons Oy
Department of Mechanical Engineering,
"Faculty of Engineering and Design,
Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606.
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