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Abstract

We shall investigate quasiconformal deformations of arbitrary Riemann surfaces
whose Riemannian metrics are given by Beltrami differentials with complex parameters
in the unit disk, where the Beltrami differentials are represented by certain holomorphic
differentials with restricted boundary behavior. They are so called Abelian Teichmiiller
disks. For the sake of discussion on general open Riemann surfaces, we consider two
types of boundary behavior. The one is based on Dirichlet finite harmonic differentials
with integral periods®) and the other is based on holomorphic differentials with normal
behavior®. By using the arguments of F, Gardiner? and 1. Kra® on punctured Riemann
surfaces, we shall discuss extremal quasiconformal mappings in Torelli space, variational
formulas of the norms of our restricted holomorphic differentials and Torelli’s theorem on
our Abelian Teichmiiller disks of an arbitrary Riemann surface.

1. Introduction

Let .S be an open Riemann surface and #(.S) be the set of Beltrami differentials:

{p=y%; ¢ is measurable and [|u|l~=esssup |E|<1}

on S. From pEM(S) we get another Riemann surface .S, with the Riemannian metric
ds=A(2)ldz+pu(z)ds| For p, vEM (S), p and v is R-equivalent if there exists a conformal
mapping between S, and S, and T-equivalent (resp. L-equivalent) if there exists a
homeomorphism which is homotopic (resp. homselogic) to the identity mapping and it is
regarded as a conformal mapping between .S, and .S.. Let R(S), 7(S) and Z(S) be the
quotient space of M(S) by R-equivalent, T-equivalent and L-equivalent, respectively.
They are called Riemann space, Teichmiiller space and Torelli space. In the case of a

compact Riemann surface S, using the Teichmiiller theory

7 (S)={z‘l—f:|: w is a holomorphic quadratic differential and [#[< 1}.
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2 Fumio MAITANI

For a open Riemann surface .S, let

T(S)={l|7w|: w is an integrable holomorphic quadratic

differential and [#|<< 1}.

For an integrable holomorphic quadratic differential w, we call Jﬂ={z‘l—2': Iz‘|<1} a

Teichmiiller disk, and for a square integrable holomorphic differential & we call Ky an

abelian Teichimiiller disk. We are concerned with the class:
7(:S) ={Z %: f is a square integrable holomorphic differential and |z|<< 1}.

Here we shall study certain abelian Teichmiiller disks. For the investigation on an open
Riemann surface .S, we need to restrict the boundary behavior of holomorphic differentials.
Firstly, we consider the restriction by Taniguchi’s Dirichlet finite harmonic differentials
with integral periods. We shall give an inequality? with respect to the restricted holo-
morphic differentials and Beltrami differentials of quasiconformal self mappings which fix
the homology. It follows Reich-Strebel’s fundamental inequality® in our circumstances.
We also give certain variational formulas of the norm of the restricted holomorphic
differential. Secondly, by using normal behavior® and I. Kra’s arguments®, we show that
Riemann’s period matrices of different points in the restricted Abelian Teichmiiller disks

are different.

2. Dirichlet finite harmonic differentials with integral periods

We use the following class of differentials. Let A be the real Hilbert space of square

integrable complex differentials whose inner product is given by
{w, c>=Real part of //w/\*&zRe (w, ),

where *o denotes the harmonic conjugate differential of ¢ and & denotes the complex con-
jugate of o. Let A; be the subspace of harmonic differentials and 4., the completion
of the class which consists of the differentials of complex valued C-functions with compact
supports. Write the subspace of real harmonic differentials as I's and for a subspace I's of
I'y denote the orthogonal complement in I'y by I't, the harmonic conjugate by *I%.
Dr. M. Taniguchi introduced the class I's; of square integrable harmonic differentials

with integral periods 7.e., / o is integral for a closed curve y and c&E1:.® For &1,

Se(p, po)=exp 2mi /; tcr becomes a function on the Riemann surface and takes values in the
unit circle. It is called a circular function. Remark that .S.(p, po)—S.(2, #1) is constant
and we abbreviate it as S.(p). Since .S.(#) has a finite Dirichlet integral, it has a continu-
ous extension to Royden’s compactification S*. The image £(c) by S, of the harmonic
boundary is compact in the unit circle. Consider a subclass of I'si: I'ie={c&EI's;: The
£Z(o) is of linear measure zero}. Set Asi;={#,=—*c+70: ¢&sic}. Now a horizontal
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trajectory y of a meromorphic quadratic differential ¢ is defined as a maximal curve along
which ¢ is positive. A trajectory y is called critical if y tends to a zero or a pole of ¢ in
either direction, and regular, if otherwise. We set Zo= {.S.(2): a point g is a zero of 6,}.
This is a countable set. For every exp 2mfa& Eo, S, (exp 2mia) consists of analytic

curves which are regular trajectories of 62, because f ’e—a mod Z and 02=(—*¢)2 on
S;Y(exp 2mia). Let Z(a) be the set UCj(a) of all trajectories Cj(a) of 62 in S (exp 2mza)
and Cj(a) be oriented so that /C j(a)6,>0. The set Z(a) (exp 2miagt Eo) is locally
connected.® Define W,(a)=? ,/c jmﬂ, and W,(a)=0 if Z(a) is the empty set. The

complement of £(c) in the unit circle is an open set, hence it is a union U/:{c) of open arcs
Zi(o). Let the length of 7i(c) be 2nm;(c). Dr. M. Taniguchi showed that

Theorem A.®  For 0,(#0)E Aaic, 2he complement of all compact regular z‘nzjectoré'e;;
of 0% is a set of 2-dimensional measure zero. If a, BEZi(0), then Wo.(a)=W.(B) and denote
it as Wilo). 1t holds that

l16]]2=23" m;(o)W;(a)=2AlWa(a)da

From this result it follows that
Lemma 1. Zet 0,E Aaic and 3 be a quadratic differential suck that for every compact

regular trajectory Ci(a) of 62

/Cj(«)IJl/‘l—,/; (@) Be.
o< [[16.AT8).

Proof. For z,£C;(a), write L:&,-}-z'a:g_pza,:g and
ﬂj(a)lJWI= fcj,(a)l@(fﬁ-ia) dtlz /. 36 where (O =D)AL,

J[0.AV5 1= [[1aeAVED a8

=2[' [ |EEFmlaganz2 [ [ dtan=2 [ w.pdy=1io.=

Then

We have

3. Extremal quasiconformal mappings

Let f be a quasiconformal mapping on .§ which satisfies that every ]ordan curve y is

homologous to f(y). Denote the Beltrami differential of f by u(z)= ;’ P It follows

that

Theorem 1.0 For 8.€As;.

ledies [T '1+“T /lZ % 0. A,
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Proof. Let a quadratic differential ¢ be defined by
Y= (A0 /0O f+i* oS )2}

For a compact regular trajectory C; of 62, choosing the parameter { as in the proof of
Lemma 1, write

Ve =1+ f08.(F) fedll (0o=0.(s)d5)
=8.() fedl+-0.( 1) fedll.
Since d{=d{ along C 7, we have

S NE|= [ 1000 fedt+04 fedl

= [, JeNdf1= ], . eizRe [ 0.~ [ b..

By Lemma 1, it follows that

ez [ 0. AV

= [/ 0.0 (+u8.40) fedt AdE
s{ /0.0 sea—unacadd} " [ AFuldel g nag )}

lal®
=10, { / LrCelfl jag nag}

Hence
e LEOEL 1 7.

Let fibea quasiconformal mapping from S; to Siy1 (=0, 1) and u: be the Beltrami
differential of f;. Denote the Beltrami differential of 7' by v: and the Beltrami differ-
ential of fiefo by 7.

Lemma 2.
[Lo—pl,uo/vo
1—p1vo
Proof. Take parameters z, z, { on So, S1, S, respectively, and write
_ wszdz {zdi zadw __ {:d
PO pds YT T dw T zudae? I;zdz

Since {;={(vw:+{zwz, {«=Lvw:+{zw:, we have

_ lowztlzw: w. — ot Llawzpof/lwrvz
T Cow.low: wit 1+ Go@s[lowe

From z,w:+2z@:=0, it follows that

wid®w  _ wdew w1 s wz

vo———3—, vp=—- — -—
0 wzdze ’ w.dw vo Lo w:®

Thus
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— }Lo—;uy-o/ vo .
1—pivo

Let S2=.So and fiofo=4 satisfy that every Jordan curve y is homologous to %(y).
We have a fundamental inequality of a Reich and Strebel type.
Theorem 2.2:0.0  For 0, Asic(So)

|14-p208./8,2 poe 1+aob./6, |2y 17
10412 /i e P o e | P

(cf. If po=vo=0, let po/vo=—1.)

Proof. By Theorem 1

leuess ff Lprtelle

From Lemma 2

1475 _1+1 pafvo 0

_MIUO 90’
. 1 wobs 1-|—|vo]29_a/}1'09a
1 g (H”'“ (1 1t peob./0, )
1
1—[Tf2=ll—_‘u1.u.—olg{11—#17012—1(1—}“/”0)!‘012}
_ 1 a2 = lpof?
= }1—#1170|2 {l—ll-"0|2+|#1[2(l”°|2_";' )——ZRGMI(IJO o )}

Since |vo|=/|gaol,

(e )

8, 1
l4+7—= .
+ 0, 1—pivo (
; 1
Ll =y (L= ol (L — a2,

Thus the inequality follows.

Let g be a quasiconformal mapping from So to S1 and

F={f:fis a quasiconformal mapping from So to S1 suck
that f~log(y) is homologous to vy for every Jordan curve y}.

Denote the Beltrami differential of /& # by us. Consider the following extremal problem:
inf {llusll : fFEF} =
When || /|| attains the infimum 4, we call  an extremal quasiconformal mapping among £.

Corollary 1.2:07  For every 0,€E Asic and fEF,
1—% 1 0¢ 0

Proof. For any >0, we can choose a quasiconformal mapping f1 from .S1 to So
such that f7'EF and 2<||us,||=A1<A-te.
From Theorem 2

oo TR [f Wil g\,
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This gives the inequality.
Corollary 2. Let the Beltrami differential of foE€ F be —kdB.[0., where ko is positive.
Then ko=F% and fo is a unigue extremal quasiconformal mapping among F.
Proof. For po=—4%00,/6, and ||u1||=41, applying Theorem 2, we have
1—4e [14-Aow1/vol? = 1—40 144 2 -
= 1 [ Rl 0, AB) < S5 g e

1—4¢ 1441
1440 1—4
proves the statement.

Hence >1 and A1=4c. Further if £1=4%o, then p1=vo and f7'=fo. This
4, Variational formulas

Let f» be the quasiconformal mapping from S to .S, whose Beltrami coefficient is
p=(f0)z/(fu):. TakeapnEM(S)andset 7(S, w)={u: |f|<1}. We shall write as (St;f7)
instead of (Stx; f1s). Now for I'sCI's, set Ay=I":+i*I"'t, Take a meromorphic differen-
tial ¢* on .S (So=.5) such that ¢fof; — o€ A:(S)+4,.(S). We have shown that there exist
differentials ¢, ¢} in A:(S7)+A.0(S) such that

pu—i*d,=—i(g;—i*4;)
g B L AT
1—lau(@O)® &= dl”

Set f=(di+1¢:)/2 and ¢j=(p,—id!)/2. The ¢+ becomes a holomorphic differential.

We have also shown that
Theorem B.% Let meromorphic differentials ¢*, J* satisfy that the poles of ¢°, §°

do not meet the support of p and $'fi—g%, Y'ofi—$*€ A(S)+4u(S). Then

2 rofimg, fr =2 )

—_—_; / / é:—%:ﬂg,Zdzdi (¢t=gtdl, Yt =y*dl),
B WS, =L (G B+, F)
=1 [ ot ripptiass @i=giat, vi=picn

Further, when ¢, ¢ are holomorphic and A,=TI",

DB S0, PO=2 W, 4D,

oS0, B =G 4.

Particulary,
D= (W, ),
O, =24, .
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Since pull back of differential by quasiconformal mapping preserves the period and
the finiteness of the norm, for &€ I'uie(.S) oof;* has integral periods and belongs to I'(:Sy).

Consider the orthogonal decomposition of aof;*:

e ,—1=a'r+d.Po,

where o:& I'4i(S:) and Ao is a Dirichlet potential. The £, vanishes on the harmonic bound-
ary of Royden’s compactification of .S}¥. Hence £(o)=ZFE(ar) for Si(p, po), Se(p, f1(p0))
and £(o) is of linear measure zero. Thus o:EMi.(Ss) and 8'=—*o;-+ics € Auic(Se).
The 6tof;—0, belongs to I'y+4,,, because

0 oft—0,=—*aro fr +*o—1d(LPooft).
By Theorem B we have the following.

Theorem 3.1
10g|]0’l|— 2”0,“2 / /ef Cdedz  (0'=4dD)

21|0'||2 2 & &
d2 . ¢ 1 £ ||9%||2_
3707 logl|6¥]| =- It ”2 {”07”2—W|(0‘; 9:)]2}.2 2/[6[]2 =0.
Proof. We have

9 1 3 ame— 1 o gty 1 [[p2,1%q,45
5 10810112 =i~ 1012 = 0%, By = [ [ 0 utidad,
a2 —1
Y7 logl|¢||2= W;

1 { f } 1164112
= 0% 6, =0.
e {2168 091} 2 i =

H. Yamaguchi considered, in his investigation® of analytic variations of pseudo convex
domains, the case which Robin constants vary harmonically. We also consider that log |[6*|
varies harmonically, then by Theorem 3 we have 8:=0 and ||| is constant. When .Sis a
compact bordered Riemann surface with # genus and » boundary components. For a
canonical homology basis {4;, B;, Ci}, take periods reproducing harmonic differentials
o(A4y), o(By), j=1...n, and o(C), i=1...m—1 such that

//G(Aj)Aw=/Aiw, //U(Bj)/\w=/;jw, //G(Ci)Aw=ﬁiw

for every harmonic differential w. These belong to I'si. and set

0ij=—"o(Aj)+io(A4j), Onsi=—*0(B;)+i0(B)), Oznsi=—*a(Ci)+io(Cs).

d 2 1 d
7!|0'”2l +'|W"37—'37“9'”2

Theorem 4.9 Assume that every log||0}!l is harmonic with respect to t. Then S
and S: are the same Riemann surfaces.

Proof. Using this assumption it follows that ||¢;f{4¢;05|| are constant. Therefore
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(6%, 6) are constant and / 6: // ‘{B_)()ﬁ and // c ‘,05 are constant.  Applying
J J

Se(Ajf) Y .
Torelli’s theorem to the double .S; of .S;, we can obtain the result.

5. Torelli’s theorem on Abelian Teichmiiller disks
Let {4}, B}} be a canonical homology basis of .S; of modulo dividing cycles, which

A} and B} are homologous to f:(4;), fi(B;) respectively (So=S, A}=4;, B}=B8;). We
can take a subspace I':(.S)® of I'x(.S) such that I';(.S)=*I";(S)L and wEI:(S) has van-

ishing A4 periods and semiexact, i.e.
A}w=0 for every Aj,
A w=0 for every dividing cycle Cj.
J

Let I':(S:) be the orthogonal projection to I'4(S¢) of the pull back I':(S)ef7:. Then
I'.(S) satisfies the same conditions as I'.(S). A holomorphic differential ¢ on .S; is said
to have /;-behavior (normal behavior®) if there exist w EA4:(.S;) and woE A..(S}) such that
¢=w-+wo outside of a compact set on .Sy. We showed that there uniquely exists a holo-

morphic differential ¢} with /.-behavior such that
L ;¢$=8i i
We know 9’):-0_/‘}—9536/1:(5)4—/1:9(3). Set Wij(f[l.)=ﬁ;¢§. We have #;;({w) =m;i(2u) and
5

(o) — i i(0) =<plofe—i, *¢ —iKilBlefi—9 D, *$ .
Hence by Theorem B

Lo =+ [ [ ($gi+irgighulidads=o.
Thus 7 j(Zu) is a holomorphic function with réspect to Z and

%m,‘(m)= / / iﬁﬁi),’-;_x.{fdzdf .

Let sketch I. Kra’s arguments® in our circumstances. Take period reproducing closed

real differentials a;, B; such that for every closed differential w ‘

Joo=J[esne, [, o= [[Biro.

Set aj=ajof7?, Bj=Bjofr'. Then for every closed differential w* on .S

A;w’=//a}/\w', -/B;w‘=///3;/\w’.

Since af, B* are associated to a canonical homology bais, they satisfy

[[ingi=su, [[ainai= [Bini=0.
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For a holomorphic differential ¢ with 4,-behavior, put
/ / aj Ap=ux;+1y;, f _/ BiNg=Ej+ini (xj, yi, €i and v; are real).

If ;=0, set a;()=a;. Bi)=B;. If »;+0, set aj@h)=—am;i[y;+Bi Bi})=—a;. Then
/ / a;i() Ap=a; are real and only finite number of them donot vanish. Further {a}()=

ai()of 7Y, B =Bi(h)f} becomes a canonical cohomology basis which satisfy
J[awnrsim=ss, [[aihnain=[[8iABIH=0.

We can take a holomorphic differential ¢i() with /.-behavior such that
[ ni=s:.

Set . i(4u, )= / / Bi() Adi). Now to simplify notation we set

af B aith) BiW)
{ ,ﬁ'{--» ,af<¢>=[ | = |
! E o) W

and represent the relation by matrix
[a‘(!ﬁ) :l_{ K@) L) ][ a’}
gl Lauw ve) lLp T
where K(), L), M), V() are (z, »)-matrices.
Since of, 8 and a*(4), B*(}) are canonical cohomology basis,

[w) Z($) }[ 0 J]{ K () fM(«,b)]:[ 0 !]
M) Ny Ll—7 o Lz vyl L—7 o

where / is the unit matrix of degree » and ‘~ denotes the transposed matrix. We have
/ / ai(@) Abj=Ai i)+ Li@mes (), (K () =[4:i;D)], L&) =[2::),
f / Bih) Abi=mi;() + 2 mis()mait), (M W)=l i), NV @) =[75h))).
Since a!() (resp. ¢?) are linearly independent, matrix [ J a§(¢>A¢;] is regular. Thus.

($10)..4s@N=1..6 DK @) +LDT ()], (T (tp)=[m:;(&)]),
(@, ) =[M )+ WA ] K B+ LA G)) Y, (T, ) =[m:i(¢u, $)]).

Put *=31a;$;() and / / ﬁf(sb)Ai/x?:é;(t, #). Consider

&, Y= a:bi(t, ) =aiajmii(tp, ).
Note that if w, o€ 4.+, we have

oo, 2oy ——tim{ [, o5 [ f, 0 [, 0 [T}
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=—lim we,

nro0J 3Gy

where w=dw and {G,} is a canonical regular exhaustion associated to {4;, Bj}. We
know that Riemann’s bilinear relation is valid for holomorphic differential with A.-

behavior. Therefore

Iple=i x| Ju¥ Ju¥ o f¥]
=iz [faipaw [[B@ AT~ [[BAE [[aiprF]

=i 2 [al'éf(t: Sl')_bi(t: ‘)l')al]

=2 Im g(#p, ).
Hence g(#u, ) has a positive imaginary part. Next w=¢i()ofr—d:i() and c=¢;())—
Bi(h) coincide with element in A.+1,, outside of a compact set. We have

o=z fo o fuo o]
=—2[ [futre [[Bh Ao~ [[Bh) Ao [[agh Aa]—o.
It follows that

mii (e, ) —i5(0, ) =(Bih) ofs —Bi(¥h), *Bi ()
=i oSt —$ih), *¢ i),
and by Theorem B

Smitn, )= [ [ )8 ptidsds.
Thus

g0, p=[[d A

Note that

| [[onwi|= [pnd,

and the equality occurs if and only if |u|=1 a.e. and 2 has a constant argument. If
p=34ip, then g’ (0, ¥)=—21Im g (0,3). By Schwarz’s lemma g is a conformal mapping
from the unit disk to the upper half plane. .

Theorem 5. Let  and ' be non zero holomorphic differentials with As-behavior.
Assume that for complex numbers t and s in the open unit disk,

wii(th ) =mi (s [') for every i and j.

Then tdlh=s' [ .

Proof. From the assumption we get mi;j(¢d/ib, ) =mij(s¥'[¢', ). Hence g(zfih, )
=g(s¢’/y’, ). If ¢’ is not a constant multiple of i, by Schwarz’s lemma [|£<|s].
Applying this to g( , 4), we also get |s|<|¢]. Thisis a contradiction. It follows the result.
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