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Abstract

The purpose of this paper is to give variational formulas for Riemann’s period
matrices and certain kinds of meromorphic differentials on an arbitrary open Riemann
surface which is deformed by quasiconformal homeomorphisms depending on a complex
parameter. As the quasiconformal deformation we consider Riemann surfaces with
conformal structures decided by Beltrami differentials depending holomorphically on
a complex parameter. For the sake of discussion on general open Riemann surfaces we
introduce a notion of behavior spaces in the Hilbert space of first order differential forms.
The mapping induced from a quasiconformal homeomorphism preserves the behavior
space. Our variational formulas are valid for the class of meromorphic differentials
restricted by the behavior space. We shall show examples that each element of our
period matrix is holomorphic if branch points and boundary curves vary holomorphically
on a covering surface of the complex plane.

1. Introduction

We are concerned with the dependence of the fundamental quantity on a Riemann
surface as it varies with a parameter. As is well known, on the Teichmiiller space of
compact Riemann surfaces of genus g>1, Ahlfors introduced a complex analytic structure
in which all the elements of the Riemann matrix are holomorphic functions and showed
that it is uniquely determined?. Recently Kusunoki discussed this for the case of non
compact Riemann surfaces belonging to class O’’ and showed that they are holomorphic
with respect to the Bers coordinate in the Teichmiiller space of Riemann surfaces of class
O”®. On the other hand, Shiba formulated some theorems on arbitrary open Riemann
surfaces by using behavior spaces on the real number field!. :

In this paper we study the above problem on arbitrary Riemann surfaces by means of
behavior spaces on the complex number field®. We consider Beltrami differentials with a
complex parameter on a Riemann surface and a family of Riemann surfaces with the
complex structure induced by the Beltrami differentials. We choose normal meromorphic
differentials which are defined from our behavior spaces. Then, roughly speaking, each
element of the period matrix for our normal meromorphic differentials is holomorphic if
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the Beltrami differentials are holomorphic for the parameter. For this purpose we shall
give some variational formulas with respect to these normal meromorphic differentials.
As examples, we can show that each element of our period matrix is holomorphic if branch
points or boundary curves vary holomorphically on a covering surface of the complex
plane. This paper is rewritten using more general behavior spaces in 9) instead of the nor-
mal behavior spaces in the jont paper” with Pf. Kusunoki. Note that the sign of inter-

section number follows 3) and 9) but is different from the one in 7).

2. Behavior Spaces

Let R be a Riemann surface, {G»} be a canonical exhaustion of £ and E={4;, B}
be a canonical homology basis modulo dividing cycles associated with {G.} such that (i)
AiNB; consists of a point, (i) (4:UB:)N(A;UB;)=¢ for 7+ 7, (iii) The intersection
numbers satisfy 4;XA;=BiXB;=0, 4;xB;=0 for i{+; and 4;xB;=1, where 4;
crosses B; from right to left. Let I'==I"(R) be a Hilbert space whose elements are complex

differentials on & and whose inner product is given by the form:

(wx,w2)=/ﬁw1/\w_z‘?=z'//;(au'ia-|—h$2)dzd§,

where w;=a¢;dz+44;dz(j=1, 2) in terms of a local parameter z. As for the notations of
subspaces in I' we follow Ahlfors-Sario®, for instance, I';, I's, I'sss and I',, denote the
space of closed, harmonic, harmonic semiexact differentials and the space of differentials of
Dirichlet potentials®.

We use the following subspace Iy or I in this paper.

Definition. For a sequence of real numbers {a;, bi} (ai+#0), we call a subspace I's of
Iy (ai, bi)-behavior space if I's satisfies (6) ['sClhsa, (¢7) T ,—I'—I’,* =TI, (¢7d) I's=T%, (7v)
a,-/A‘_w=b,-/;’_wfor any i and wEIT%.

We know the following.

Proposition 1. (cf.9)) On an arbitrary Riemann surface, there exisis an (ai, b;)-
behavior space for any sequence of real numébers {ai, b} (ai+#0).

Now we have

Lemma l. Let I'; be an (ai, bi)-behavior space. Then

lim o Wiwe=0 for any w1, wsEly,

7n-»00

where Wy is a primitive function of wr on R—U (4:;UB;).
Proof. From conditions (i), (iv) of Iy, we have

o wrmtn (fy wart B o fo oo fyo )

On the other hand, by condition (ii) (w1, we*)=0. Thus the conclusion follows.
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Similarly we have .
Lemma 2. lim [ f5=0 for df €L, oET'
nsoo J3Gp

lim S&oi—O for dSEFsol, O'OEFMI‘

neoo J 3Gn

We remark that

Lemma 3. Let a harmonic differential w satisfy a; [4 iw=é,~ A L@ SJor any i. If w
is equal to a differential o in I'+Teo in a neighbourhood of the ideal boundary, then wEI'.

Proof. Itis clear that wE€ I and for any e E 1.

(w1, “’*):},ifg {— Gy W1EJ+GZ'.” [./Aiwl./ﬂiw—v/;-’wlr/;i c"u]}

=lim — Wio=0.
3Gn

7500

Hence w is orthogonal to I';* and we I,

Here we define a boundary behavior of a meromorphic differential.

Definition. For an (ai, bi)-bekavior space I's, a meromorphic differential  has I';-
behavior if there exist a neighbourhood V of the ideal boundary and differentials wE I,
woE Ly, such that>=w+wo on V.

By Lemmas 1 and 2, we have

Proposition 2. (cf.9) Let meromorphic differentials by and 2 have I'y-behavior,

Then

lim aG"WIJ‘ZZO’ lim acnyju,lle:o,

n 00 100

where ¥ is a primitive function of Y on R—U (4:iUB;).
We know the existence of the following elementary meromorphic differentials with

I';-behavior.
Proposition 3. (cf. 9)) Let I's be an (ai, bi)-behavior space on R. Then there exist

meromorphic differentials with I's-behavior s, Bivey hpms and iy 0 5 such that

(7)) ojx2s holomorphic and a; /A {;/:,,,:é; /; ‘_:,b,-,,—a,-b‘,- P

(i) 4 is holomorphic and a; /Ainzj,,=é,~ /B’_zlr,-,x—é.-&j,

(757)  tpn,x has the singularity —d(1[z") only at p (z is a fixed local parameter about
p and n>1), and satisfies a;'/;izﬁ,,n,,:b;'/mzﬁ,,n,,,

(2v) Yp0,x has the singularities %z_ at p and —% at g (w s a fixed local parame-
ter about g) and is regular analytic elsewhere. Further it satisfies a; L iz/:,,.,,, =4; /; ’_I/;,,q,,,
where 8; ;=0 for i 7, =1 for i=j,

In the classical theory there are some relations between the normal integrals, In our
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case we have corresponding relations and show them by the calculation of inner products
between these elementary differentials. ;
Proposition 4. Let us set /;iz/:,,,=T;j=T;j'+z'T;j”(T.-f', Ty are real). Then the
malriz (Tij)is,j<h (0<2< genus of R) is symmetric and (T;")iss, j<k 15 positive definite.
Proof. Since ;- and 4; . have I's-behavior and the normaliiétidri, we have

0=(pi e, ;,5*) _ ‘
=lim {—_AGn Vit ?."I: Allﬁi,z_/sl!ﬁj.x— 815”:.: AI‘/’:’.::|}

R 00

=—/;j¢i”—/;l.¢f,‘=le'_T,~j,

k N
Hence (77;) is symmetric. If we set w= 3 ciifi x, then

i=1

k
0<|w|2= %f:‘fj(l/li.r, 2 ,5%)

V=.—z'2k_‘, ¢i¢; lim {_/ac,. 'P.i.xm‘l' ;2:[ .A'l‘/"'"/;!lm— ./Bllﬁ;"_/:ﬂm]}

£i7 700

, ﬁ_ié;,’z,—(/”tﬁ{,:—ﬁ;}m)

& _ k
=—i R il (T—Tip=2% cic;Ti;".
0 o -

115}
Thus 77;" is positive definite.
We set

' #
P )= [ i,

7 '3 »
¥ (2 )= [ bonee

’ ? »
q/:ld(P ’ g)=/', ¢P:4p‘>

where 2, ¢, ', ¢ ER—U(AiUB;) and the paths of these integrals are taken'in R—U
(4:UB:). Then ¥;*(p', ¢"), ¥;,.(#', ¢') and W5 (#', ¢') are meromorphic functions with
variable " in R—U(4:U B;). We can put the relations among these functions in order as

Proposition 5.

(5) [, brea=2mi¥ix(s, 9,

) Vo2 ) =P (5,

(%) G o W0 @0, Vo= 57 o7 P (e
() ¥t )=roy7 457 P @ s
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where z and w are the local parameters surrounding p and g whick define the singularities
of Ypnsand i, qsx.

Proof. Let V,, Vg, V, and Vg be disjoint parametric disks surrounding 2, ¢, p’
and ¢’ respectively, which do not intersect U(4;UBi). Then we have the following by
Lemmas 1, 2 and the period normalization.

(1) 0= $o.0s"r-vuvy
=l.,if2 B 3(Gn—Vpl.J Vq)qux¢"q”+ f;\:",, [/ﬁ"ll’.”./ls.'"b”"’_,/;flll"”./«!i'ﬁ"“]
=2 ¥, 9= [, brar

(i) 0=(bj, Pon,e*)rv,
= p'}/jz,’[,,,’",,—ﬁjl/:p,n,x

av
2ni  d* v
=T @ T e [, s

(i) 0=(p,q0,5, ¥p' 0 ,s*)R=VpU VUV UV,

= Wity et wr g
AVpUVY P»E‘)b# 14,5 AV U 29 ll‘p 14’ ,%

=2mi¥},, (2, )+ (d¥ 3 Fha) = Fhgthoes)

VUV
=21rz"1’;,,, (2, q’)—Zm”P;,,q.(p, 7,
(V) O=(pune, Pame®)r—v,uvq

= q’;’"¢q'"‘r’

“ Jawpuvy
= W, qj;m‘)be;"‘,‘-*-'/a‘vp {d('{l;m :'M)_ W:'Ml/""”»’}

2ni  d” . 27 d” .
=Tn—D1 dwm T 0@ Nomo= Gy Gor Fam (&2 les,

(v) 0=(hp,n,5, Yo', s ) R-Vyuveuvyuvy

= ontrast AW Whe) =g thons

WVpUVY AV UVe)

wx P 27 4" .
=2mi¥}, (2, 7)_(71—171)_! a P rne (8]0,

Q.E.D..

3. Deformations of behavior'spaces

We consider a Beltrami differential p(z)—g%(llyllw=esssuplﬁl<1) on R and denote by

R, the Riemann surface whose conformal structure is given by ds=|dz+4pudz| in terms of
a local parameter z on Z. Let f be the quasiconformal homeomorphisms from & to R,
whose Beltrami differential is p.g—:, ie.

G (Hesfell=Y;
L~ (T eoferr ), M
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where 7 and 17, are local homeomorphisms from & and &, to the complex planes z and
{ respectively. Then finduces an isomorphism f* from I'(R) to I'(R,):

SHw)y=[4( o f) T f )+ B = f~)(TT = f~ V)]
FLAWTfN Mo f0eA BT f~H)( o T f~Y)7d{
where w=A(z)dz+ B(z)dz in terms of a local parameter z in a neighbourhood of 5 lisa

local parameter about p'=f(p) and (oY), (e f~1)¢, (o f~Y), (T f~1); are distribu-
tional derivatives of (JT=f-1) and (-f-1) respectively. Let P, denote the projection

from I' to I's and by fi* the composite mapping Piof%.  Similarly for the inverse
mapping f~! we can define (f~1)¥ and (1)t
We know

Lemma 4. (¢f.10), 11)) The mappings (f~O)f4, flo(f=) and (f~)stofit, fite (f~1)ut
are identity mappings of I' and I'y respectively. Further f¥ (resp. fi¥) gives an isomor-
phism between I'(R) and I'(R,) (resp. I'n(R) and T'(Ry)). If l|nlle<A<1, then

AL, <AL \ellp for rET(R)
IAKIE, <75 llell; for wETWR)

Let o(C)*ET.(R)* be the period reproducmg differential for a cycle C on R and
a(f(C))* EI'so(R)* be the period reproducing differential for a cycle f(C) on Z,. We
also know

Lemma 5. (cf. 10), 11))

(fH7), o(f(CNNru=(r, o(C)*)r for any r€T(R),
(fit(w), o(f(CN*)rp=(w, o(C)*)z  for any wETW(R),
Sy R)Y=Iy(R,), where I'y=TI:, I'ss, I's and T,,,
S (R)=T":(R:), where I''=Inss, I'ny T'no and T'im.

We remark that
Proposition 6.

(SHr)*, fHre)r,=(11, T2)r  for any 11, 72 ET'(R),
(frf(w1)*, fit(we*))r,=(w1, w2)r  for any wi, w2 EN(R).

Proof. Let7;=Ads+2B,dz (j=1,2). We have
(FH), SHrs) s, 1
——s / .. (st BB f-— (T 0Ll
——s / (41 4>+ B1B)dzdz=—(r1, rz)k

This proves the first equality. The second equality follows from the first equallty and the
orthogonal decomposition I'=T A+Poa+ Teo*.
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Corollary 1. o f(C)*=F¥o(C))*.
Proof. By Proposition 6 and Lemma 5, for any w& I
(fi¥(w), fi(o(C)*)r,=(w, o(CY)r=(Fi¥(w), a(f(C))*)r,.

Since f3* is an isomorphism between I'y(#£) and I's(R,), we can obtain the conclusion.
Now we can show that the quasiconformal mapping f induces an (i, 4;)-behavior
space Iz «(&,) on R, from the behavior space I':(X) on R. We set

Ts w(Re)={fi¥(w); wET(R)}. |
Proposition 7. The space I's W(R,) is an (ai, é;)-be,’zavz;br space bon Ry, te.
@) Fz,;«(Rl‘)CPh“(RF), (77) I‘rm(ﬁﬂ)‘l"[‘ )P(RF)*_Ph(RP)a (¢77) I‘x,#(k.u)=
Toa®y), () a /A w=b; / w for any wE s W(Ry).
Proof. From Lemma 5, (i) and (iv) are evident and by the definition (iii) is clear.

As for (ii) we first show that Iz .(#&,) is orthogonal-to I ,.(R,.)* By Proposition 6 we
know that for wi, w2EI(R)

(fi¥(wr)*, fif(w2))r,=(w1, —w2*)r=0.
Next if o’ € 'y(R,) is orthogonal to I’x,,,(R,‘)—I—F,,,,(R,,)*, then for w E:(R)
0=(o’, fit(w)*)ra=((F"D¥(")*, (f~Dute(—fi¥(w)))r
=((/"DH()*, —w)z.
Hence (f~Dat(w)* E(R)* and (f~)sf(w)ET(R). Thus we have o' =fito(f~)kw')E
I'; .(R,) must be 0. Therefore, this shows (ii).
We have meromorphic differentials ;¢ u, $hrp),n,2,8, ¥ri),7(0),5,0, With I'; ,-behavior

on R, as in Proposition 3 and also ¥ 7, W7, ., ¥ 74, r«)» We make use of the Hada-

mard variational method and follow Rouch!® and Ahlforst). Then we have

Lemma 6.

S fL— () irdadz= [ [P 5 ful ladsde.

Proof, Since ;s . has I’z ,-behavior, (f~1)#}; . . is equal to an element in I';4T, in
a neighbourhood of the ideal boundary. By Lemma 5 (f~1)# preserve periods. So by
Lemma 3 (f 0¥, u—th; s ELs+Teo. :
Thus we have :

O=(F e, (Fsen—is) e
— [ [ L )= (P 2)alds (¥ Lz
 AF LTI E AL
=— [ [N L= (P —I(P et dsdz.

Since {;=pul., the assertion follows. -
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This guides
Lemma 7. If ||ulle<A<1, then

5o fLudelle< T el
et el < 22l

Proof. By Lemma 6 we have
15— ol e = (P )l
széll(?’”")«gdzlu,
1P 3Ll — sl S AP 5 )ladlls.
‘Hence II('I’jf’”)&Czdzllxsl—éH‘l‘f,xHR, ~and
1232l olla=|(F 5 *)Lodal o
<HI(P5")cLedsllx
<1 IWslle.
Next we have
N ebg,e,0—2lIR
=1 [ [ 15 )eLe— (Bl (¥ el 2dsds
1P 2 Leds— i B I(P S el oz 2
— 2[5 Muledzll}. '

Thus
18w < gy Wl

This completes the proof.

Similarly we obtain ‘ ‘ .

Lemma 8. Let the support of p not meet a vegular vegion V (p, g€ V). Assume that
the singularity of Yis(s)n,s,u 15 the same as $p n 1, i.0., 12 is normalized so that (f = Yrpy nxu
—YpnsET(R). Then we have

/ Al(‘f’}'{},,n)vf{s—(?’ Wlrdsds= [ [ 156, Do fubil2dads,
//];|('P;’(;),f(q))c°f£'_(‘P;,q)lldedz // I('Pf(p) f(q))c°f,quI2dde‘-

Remark. We can say the singularity of /() a,x,. 1s also —(d 2
Lemma 9. Under the same conditions as in Lemma 8, if ||u|le< 2<1, then
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II('f’f(m,n)fodeIIR—v < 77 Ws.0.sll—v,
NCF 75, 7)o fLedallzv < 7 llhp,n,5ll2-v,
1~ 5,0, < L2 sl

A~ orrcor.e p—t/'p orlies 22 “ LA

4. Variational formulas

Let u(z, z‘)% be a Beltrami differential with a parameter 7 on K and 7 vary & neigh-
bourhood of zero in the complex plane. Assume that u(z, #) (p(g, 0)=0, [lulz, )lle<<1)
is analytic with respect to # for fixed z_'a.nd -(»%y.(z, ?) is bounded and measurable. Then

Rpe,n=2~; is defined from u(z, l)% as in section 3 a,nd also fuz,n=/f: is a quasiconformal
homeomorphism from &=~ to &: whose Beltraml dlfferenual is ulz, )3, dz
We denote meromorphic differentials’ with T e -behavior on R, by ;,«(¥;*), pn,:

(¥} ), Up,0,4(F}5,) (cf. Proposition 3), where singularities are taken at /() ot fi(z) and
Pp,n,+ is assumed to have the same singplarity as Pp,n0, 1 (fr )yt —thpn,0E I (Ro).
For brevity’s sake we shall omit # for #=0 in the notations. We set

T O=( Wby, BN+ [ b

St o O =((f oyt —hp 1, d(Bi)*)R-+,/;i¢h’"’

Rep =S Vpan—thney 0Bt [ e
By Lemma 6 we remark

(st o B V=Chsi—f s, SSABN)a,

=@y (BN r—(f e Sy, o(BI*)e

~@sr oS BNI— [ s

If we allow the notation '/j(;; ~)’¢v,~,¢, we can write
18

7i,(0)= b0 =hj.e, o(So(Bi)*Drs..

fusi
Similarly we can write
S"J?y” (t)= ‘lbp)"x'

l/‘ﬁ:q 5.

f4(B5)

Ri ()= Fran
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Now o(2;) is equal to an element in I, in a neighbourhood of the ideal boundary and
0 [, @B —fy=—api;—b; [ fitasi;
=; [, @B —pi.
By Lemma 3 o(8;)—¢: €. Also by Lemma 5
o [, (S Ws—tb=0s [, (s,

and (fi )%, —y; is equal to an element in I's+I%, in a neighbourhood of the ideal
boundary. Hence by Lemma 3 we know ( SO —; e+ Ty, and

Ty =( S, (Bt [, b
=(fWbs—hi, ((B)—Fi)*)
(SO, —py, J‘f")k-l-/;itﬁi
= Msa—s, $iet [, .
We can write
Q)= Wra—ts, §0et [, ¥,
St Q= Wy mi—tpr, 0ot [ fipn
Rip )= Wpei—bper F:0t [ e

We have the following variational formula.

Lemma 10.  Let ||u(z, 2)|l-=esssuplu(s, )| =A< A<1.

]fmﬂ<°°, ~then
t>»0 ltl

&7 T0o= [ [ D Gy o, Dol
Proof. We have
Ti5()— Ti50)=((fr Vs, e —bs, $i*)r
= [ [ (P9 — (P ) ds+ (Fy)Lads A—(Pi)eds
= [/, () euldadz
= [/ EDP D pdsdst [, (PPt —()udads.
By the way, from Lemma 7,

/ ,/R (FD(Wi %L —(¥)))udzdz
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<O IR (2 eLeds— sl
<720 Wil

Since lim £(2)2/|#|(1—4(z))=0,
t+0
%T;;(&‘)|x=o=1‘irr61 wf_@_)_
=tim [ .2, 25D dads

— [ ®0(#): 2y uta, D-odizds.

Q.E.D..
Proposition 8. Assume that lim ||u(z, t+47) —p(z, O)||eoflr|<<oo. Then
>0

G TO= [, (P FiP e fr e, Daodad,
Proof. Note that
Tist4) = T =St W sse Wi, a8

=(fle(f i) eae—i,0, o( f(BD)*)xy.
The Beltrami differential of fi4.o 371 is

L plz i) —p(z, o) ofimr 9L df
D: 1—p(z, Hulz, t+7) g’

If we denote this by u({, T)f:ll_g’ by Lemma 10

& 7= [ [, @ieyctim 2o agag

— .u'f(z} t) o £i—1 2
= [/, @O0 @' T St

¢ ¢ f( ) i) _Zl_ a(l) Z) | _
= [ e fi e frp B e aG ey e

= [ (P fiP ) fpula, He2dndz,

Similarly we have

Proposition 9. Assume that the support of p(s, t) does not meet a regular region V
whick contains p and g, and that liTn (2, ¢47)—p(z, t)llm/|-r|<00. Then

S Senl)= [} Jes FiPi)e frgy e, DLerdnd,

G RindO= [ [ (P4, deo W xn gy le, Dlurdads
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Under these conditions, the variational formulas show the following.

Proposition 10.  The functions Tii(t), Si,pn(2) and R,,M(t) are analytic functions for
variable ¢.

From Proposition 5, we have

Proposition 11.  The functions ¥ite f1( p, g) and g pr Yite fi( 9, ) are analylic fum‘-
tions for variable { and they are analytic for variables p, #gEV and t, where V does not
meet the support of u(z, f).

Let ¥ be a regular region which contains p, ¢ and does not meet U(A4;UZ5;).
Further, assume that the support of u(z, #) does not meet ', ¢’ and 7. Since f; is confor-
mal at ' and ¢', (fi~)¥,-.o-, has the same singularity as ...  Hence (=, os—tbpqr
belongs to I" and, by Lemma 3, to I's+I',,. We can consider the inner product

(S Oy o=y 0y W)R—V- -
The differential d log (s"—I1(#))/(z'—TI1(g)) in a parametric disk V'cV(p,g€EV’ and 5’
is the local parameter) is extended to a Cl-closed differential o,,, whose support is con-
tained in V. Then ¢, ,—o0, , belongs to I's+I,,. We have

N (00 RN '/‘», *)r-v

=((fr~ 1)"/‘» v'.f—‘/’p @y p.a—0p0 c) )R—'

=—((fr Wy —p.es Bra—0pd*)

= Jov (W;’,q',t °ft—g,p'.c')(¢’;.v—°'p.q)

=2mi (V)0 oS0, ) —¥y.(5, D}
Thus we can write ¥}, ..o fi( 8, ) as

Vi oo fi(p, @)= 2,,., (e —dyas Upa* v+ ¥ 0 (5, 9)-
Further we have

dn | 1
dzm ‘Iji','q' s fi( 2, 9)— (m )!

«ff_l)"/‘p a t—'/'b' @ ‘/’p"" DRy
+d_zm- ‘/Jﬁ"-Q'(p) 9)'
If we also assume that ¢ »,; has the same singularity as ¢+, then we can write as
1 _—
YI;,’" °ﬁ(p’ 9)=W ((ff_1)¢".”-‘—‘pﬁ'.”: 'ﬁp.a*)R—V'*"Fv'.n(}’, 9))

& ws, o i, =T D i tbrms Brm iy

?l-qz‘;.‘ Pyl 9)-

Under these circumstances, we can obtain the following.
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Proposition 12, If lim ||u(z, 2-+7)—p(z, O)||e/|r|< o0, then
>0 .
TN [ @ P g 2dzds
E[_ P'.q' °f'(,ﬁl q) = Py R( p’,q’)5°f’( p,q)(".ff —87#'(2") t)cl dz;

%7 ( (cﬂl.:"’ W;',q' ° fi(z, {7)|z=o)

=—(%_/./I; (‘}y",4')c°f'(gj;xm)c°ﬁ"a—fp(z, l)gzzdzdg,
d 1 )
i H?Yj;'m °.ff(f) g)Z%T.//;(W;,’”)cof'(qli‘q)coﬂWﬂ(z’ t)szdzdi,
d /d=
H?( dzm gj;'ﬂl °_ft(2, 9)[::0)

= (mz;,'l)!__//; (?’;',n)c"ft(lfﬂp,m)vft%p(z, £){,2dzdz. ;

. - dr d~
The functions ¥y, oo fil( 2, @) g g X8 0 ¥ hrn o S D, 9) and —3m ¥ y,no f(P5 @)

are analytic for wvariable t. Hence ¥ .o f(p, ) and V', .o fp, q) are analytic for
variables p, #qE V and &.

. 5. Examples

Example 1. Let R:be atwo-sheeted covering surface of a fixed region in the complex
plane with a parameter 7 varied in the unit disk and let {2.(#)} denote a countable number
of branch points of ;.. We take disks Vy={z; |[z—a.(0)|<7.,} which are disjoint.
Assume that @.(#) are holomorphic and |e.(#) —a.(0)| < £7.(A#<<1). We consider a function
Jfron C;

i 702(2+ aa(?) —2ax(0)) -
SO=) S i @O —an ) e—anDy O omevery Vi

z outside of U V.
n

Thenﬂ(a,,(O))=a,.il); f;(z)‘=z on every {z; |z—a.(0)|=7s} and’

(i _ [ —(@s(t)—an(@)(s+an®) —22:(0))
(e 7atH@lt)—an(0)G—an(0)
0 outside of U V5,

on every V,

which is analytic for variable 2. We also have |[(/):/(f):/<4 We can regard f; as a
quasiconformal homeomorphism from & to £: whose Beltrami coefficient u(z, £) is analytic
for variable # (-387 (2, ¢) is bounded and measurable). The u(z, #) satisfies T}rjx; lu(z, 2+7)
—p(z, D|flr{<oo. Thus by Proposition 10 77;(2), Si,.»(?) and R, () (p, g& U V.) are

analytic functions for variable 2.
Example 2. Let R be a finite bordered Riemann surface (with a finite genus) whose
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boundary 8R consists of a finite number of compact analytic curves C;. We denote by
Vi={3j; pj<|zj/<1} a ring domain whose boundary {z;; |z;|=1} is Cj. Let fi(z; %) be
analytic with respect to z; and ¢ on a neighbourhood of {|z;/=1} X {0}, fi(zj, 0)=2; and
injective on {|z;]=1} for a fixed ¢. '

We can assume that for a sufficiently small #

i(1—lziDz; | lzil—pi 2j
Fies )=S0 50 + A=)/ ( DK )

is a quasiconformal homeomorphism from V; to a ring domain V(). We regard (—
U Va)U U Vau(?) as a Riemann surface R, and

F,=( identity mapping on R—U V,
Fj(zj, ) on every V;

a quasiconformal homeomorphism from & to £;. The Beltrami coefficient u(z, #) of # is
analytic with respect to ¢ and satisfies the condition of Propositions 8 and 9. Hence 77%;(2),
Si,p,2(?) and R; p .(¢) are analytic functions for variable 2. _

These give examples that each element of a period matrix is holomorphic if branch
points or boundary curves vary holomorphically.
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