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Abstract

Large deviation theorems of the Donsker-Varadhan type are studied. Those
theorems for a family of stochastic processes converging to a Markov process have
already been obtained by the present author. In this paper, these theorems are modified
so that they cover the case where each process is killed on exiting a compact domain.
The general theory of large deviations of such a type is mentioned at two levels; the
state-space level and the path-space level, and applied to the study of the principal
eigenvalue of the generator of a Markov process. It is shown that the principal
eigenvalue converges as the probability law of the corresponding Markov process
converges. As a typical example, the converging family of Markov processes in the
homogenization problem is investigated.
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1. Introduction

M. D. Donsker and S. R. S. Varadhan established the modern theory of large deviations for a
Markov process, and gave outstanding applications.” *® 'V The large deviation theory for a
family of stochastic processes converging to a Markov process is established by the present
author,g) where the converging family of stochastic processes can be taken from various limit
theorems, for example, the homogenization problem as shown in Example 4.1. On the other
hand, the variational formula for the principal eigenvalue of the generator of Markov process
was also studied by Donsker-Varadhan.” ® All the results mentioned above are closely
related to each other through the variational formula concerned with the “/-function” (see,
e.g., eq. (2.8) and eq. (4.3)).

Some results on large deviations for a converging family of Markov processes in the
case where the processes are killed on exiting a compact domain, and on the continuity of
the principal eigenvalue were found by Okura.” In this paper, we give full details of these
results in Sections 2 and 4, and prove them. In addition to the large deviation theorems at
the state-space level given in Section 2, we also give those at the path-space level in Section
3, which are of interest in their own right. Some parts (the lower bound) of Section 2 will
be reduced to the general results in Section 3. In Section 4, we apply the general theory in
Section 2 to the variational formula for the principal eigenvalue, and establish the continuity
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of the principal eigenvalue with respect to the probability law of the corresponding Markov
process, in the sense of the weak convergence on the path-space. We also give an example
of a converging family of Markov processes in a homogenization problem,"'® and show that
the corresponding principal eigenvalue also converges.

2. Large Deviation Theorems at the State-Space Level

Let X be a locally compact separable metric space and let 2" be a space of all trajectories
on X that are right continuous with no discontinuities of the second kind, endowed with the
Skorohod-type topology (see Section 3). For any BC X, two types of exit times of @ € 27
from B are defined by

Tp(@):=inf{f=0; w(t) & B}, 2.1
Ty(@):=inf{t>0; w(t) ¢ B or w(t-) & B}, (2.2)

where @ (f—) denotes the left hand limit of @ at t = 0 with the convention that @ (0-)= @ (0).
Let E be any separable metric space. Throughout this paper, % (E) denotes the Borel o-
a.lgebré on E and 2 (E) the space of all probability measures on E endowed with the weak
topology. Let C(E) denote the set of all bounded continuous functions on E.
For any ¢>0 and @ € 27, we define L, ,€ 2 (X) by

L=} [1:@E)ds  (BeBW), 2.3)

which is called the occupation distribution (at time f) of @. Here, and in what follows, 1
denotes the indicator function of set B. Throughout this paper, by a Markov process we
mean a family M=(P,) of probability measures P, on 2% such that (2", w(?),P;) is a
canonical realization of a time-homogeneous, conservative Markov process on X. Let G be
an open subset of X and let Cy(G) denote the set of all bounded continuous functions on G
vanishing on the boundary 9G. Set

' ;vc (t,x,dy): =P, (w; () €dy,Ts(@)>t) (t>0,x€0). (2.4)

We impose two assumptions on M and G:

(A) X3z~ P,eP(2)is continuous.

(B) (1) There exist a finite measure da(y) on G with ®(3G)=0 and a jointly measurable
function pg(x,y) such that, for any x€G, ps(l,2,dy)=pe(x,y)da(y) and
pc(x,y)> 0 a-a.a. ye G; - -

(2) For any Be % (G), x — ps(1,x,B) is continuous on G;

(3) P,(@; Tg(@)=T;(w))=1for any z€ G.

Under the condition (A), M generates a Feller semigroup. Its infinitesimal generator is
denoted by (4, Z (A)). The I-function with respect to M is given by
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I(y):=sup{j;:§‘1£dy; ueDA),infu>0y (LEPX)) (2.5)

It is easy to see that I(4) is lower semi-continuous on £ (X).
Suppose that we are given a family of Markov processes M®=(P;) (&> 0) satisfying

(A*) For any x € X, {P;} converges to P, in (Q")as €|0and y—x.
It is easy to see that (A*) implies (A).
Note that if G is compact, then 22 (G) is naturally identified with the compact subset

{LePX); u(G)=1} of P(X).

Theorem 2.1. Suppose that (Af) is satisfied, and let I(1) be the I-function with respect
to M
(1) For any closed subset C of P (X), it kolds that

. l £ s _ .
El_nlsettg 7 IogflengI (w; Lo C,Tg(@)> 1) < ﬂeégfgz(c)f(u). (2.6)

(2) Suppose that (B) is satisfied and let 1 € P(G). Then, for any neighborhood N of
U in P (X) and any compact subset K of G, it holds that
lim in 1 1og inf Pf(@; Lio€ N, To(@)> 2~ @7

By the argument given by Varadhan,m we have the following

Corollary 2.1. Suppose that (A®) and (B) are satisfied and that G is compact. Let @ (L)
be a continuous functional on P(G). Then, it holds that

lim .}mgsupEﬁ [e' %) T ¢ (@)> f]=sup [P () -I(1)), 2.8
t—c0,E10 1eG He2(G) .

where E¢ denotes the expectation with respect to Pf.
Consider a condition weaker than (A°):

(Aj) For any x€ X, {Pf } converges to P, in the sense of finite-dimensional distribution as
gl0and y—x.
To prove Theorem 2.1 (1) we recall an earlier result:

Theorem 2.2 (Theorem 2.3 by ﬁkuras)). Suppose that (Af) is satisfied. For any compact
subset. A of P (X), it holds that

lim sup log sup Pf (a; L,p € A) <- inf, (1) 2.9)

t—o0,£10 zeX

Proof of Theorem 2.1 (1). For any @ € Q" ,Tgz(@)> t implies that L; ,(G)=1 and hence
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L, »€ 2P (G). Thus, eq. (2.6) is reduced to eq. (2.9) with A=CnZ(G) since A is compact. [J
The second part of Theorem 2.1 is a corollary to a more general result (Theorem 3.1
(2)) given in Section 3. The proof will be given at the end of Section 3.

3. Large Deviation Theorems at the Path-Space Level

Let X be a Polish space with metric d and let D([;X) denote the space of X-valued right
" continuous functions on I with no discontinuities of the second kind, endowed with the
Skorohod-type topology, where I is a connected subset of (—oo,); namely, a sequence
{@,} in D(;X) is said to converge to a @ € D(I;X) if there exists a sequence {A,} of strictly
increasing continuous mappings from I onto itself such that

sup {d(@,A,@®)),®®)+IA,EH -t} -0 as n—o0 . 3.1
teIn[-T.7]

for every finite 7> 0. It is known that D (I;X) with this topology is a Polish space. We define

the evaluation mapping x; on any D([;X) by x,(@):=@ (f) for any f€1. In the following, we

denote Q: =D ((— 0,0);X), 2*:=D([0,0);X) and 2}:=D([0, T}; X).

For any measurable space (E,& ) and any sub 0-algebra & of &, we denote by B(% )
the set of all bounded & -measurable functions on E, and by £ (& ) the set of all probability
measures on (E,&). Note that, in case E is a Polish space, we have
P(B(E)=P(E) and that P (E) is itself a Polish space. For any 4,A € P (&), we define
the entropy of 4 with respect to A by

hg (A; l0): = sup [f(bd,u—log fe‘”dﬂ,]. (3.2)

PeB(F)

The following basic fact was proved in Lemma 2.1 by Donsker-Varadhan:?

Proposition 3.1. For any ﬂ,ﬂ.é.@(ﬁ"), he (A; 1)< oo if and only if U is absolutely
continuous with respect to A and the Radon-Nikodym derivative f:=duldA is U-
integrable. If this is the case, then we have

hs (Aip)= [logfdu= [ flogf da. (33)
Suppose —0o <5 <f<oc0. We denote by &, the 0-algebra over Q generated by
{xz; T €[s5,1]N (- 00, 0)}. It is known that £ (2)=Z_%, and that Z(2") and & (27) can be

naturally identified with Z° and & 3'3, respectively (0 < T <o0). Furthermore, the restriction
mappings @ — @, #: and € — €, #: define the following natural inclusion relations:

P(Q) = P(FL) - P(F?) | (3.4)
so that we can think as

PP PR} (3.5)
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In the following we repeatedly use these relations without making explicit reference
to them. We define the translation operator 6, of Q2 onto itself by x;°6,=2;,, for any
teR and also on Q" for any t=0. Let £5(2) denote the set of all stationary measures
RQeP(Q), ie,Q-0;'=Q for all t€R. Note that Ps(R) is a closed subspace of P (Q). Let
P (Q):={Q € Ps(2); Q is ergodic}, which is the set of all extremals of the convex set
P (). :

Let M =(P,) be a Markov process on X satisfying (A). We define the entropy H(t, Q) of
Q € P4 (Q) with respect to M (at time #>0) by

H(t,Q):= fg hgo (Pogy; @0.0)dQ (), (3.6)

where @), denotes the regular conditional probability distribution of @ given &, . In view
of Proposition 3.1, if H(#, @)< oo, then €y, is absolutely continuous with respect to Py, for
@-a.a. w, and we have ’

) dQo o ~ dQo o
H(t,Q)= LdQLIOg dP, ) 4Qo.0= -/;Zlog dPy )

We simply call H(Q):=H(1, Q) the entropy of Q € Ps(Q2) with respect to M. It is known"
that H(Q) is a lower semicontinuous affine functional on &5 () with values in [0, oo].
Let t>0 and @ € Q°. For any B € % () we define

de. (3.7

F!

"y

RioB)=1 [ 15(0.0")ds, (3.8)

where @' denotes the periodic extension of {@(T); 0 < T <t} to (- o0, o).

We define the mapping ¢: Zs(2) - 2 (X) by q[QN B):= Q(w:w(0) € B)(B€ %A (X)), i.e.,
q[QI] denotes the one-dimensional marginal of @. It is easy to see that g[R,,]1=L;». The
following contraction principle is established in Theorem 6.1 by Donsker-Varadhan:”

QEys(lfg.fq[Q]=ﬂ H@Q)=Iu) (LeP2X). (3.9)

Let F be a closed subset of X and let Qr: =D ((— oo, 00); F), which is a closed subset of Q.
Let P5(2r) denote the set of all stationary @ € 2 (25), which is identified with a closed
subset {Q € P (Q2): Q(25)=1} of Ps(2).

Lemma 3.1. For any @ € Ps(Q), q[QNF)=11if and only if Q(Qr)=1
Proof. Suppose q[Q](F)=1. Then, since @(@; @ (0) € F)=1 and since @ is stationary, we have
Q(w; w(t) e F for all rational numbers) = 1 and hence @ (2;)=1. The “if” part is trivial. 0

In the rest of this section, let G be as in Section 2 and let F:=G. Consider a family of
Markov processes M®=(P;) on X (€>0). The following condition will be assumed for the
family {M*®}.,, only in the first part of the theorem below:
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(A7) For each £>0 and any compact subset K of X, {P%; x€ K} is tight as a family of
measures on D([0,1];X)

Theorem 3.1. Suppose that F:=G is compact. Let H(Q) be the entropy with respect to M.
(1) Suppose that (A®) and (Af) are satisfied. For any closed subset C of Ps(Q), it
holds that

limsup+log supPS (@; R, o€ C,Tr(@)> )<~ _inf  H(Q). (3.10)

t—o0,£10 2€6 QeCNPs(2r)

(2) Suppose that (A®) and (B) are satisfied. Let Q € Ps(Q) be such that q[QI(F)=1.
Then, for any meighborhood N of @ in Ps(R2) and any compact subset K of G, it
holds that

liminf L log igg PE(@; Ri0€ N, Te(@)> £)>—H(Q). 3.11)

t—o,E10

In the proof of this theorem, we need some preparatory results. The following lemma was
proved in Lemma 4.4 by Okura:®

Lemma 3.2. Suppose that (A°) is satisfied and that there exists a relatively compact
open subset G, of X. Let Q € Ps(Q). Then, for any neighborhood N of @ in Ps(Q), there
exist an so>0 and a neighborhood N’ of Q in Ps(2) such that for any open set GC X,
any compact set KCX and any s=s,, it holds that

lim inf L log inf Pf (0 R0 €N, T3 (@)> 1)

t— m.gl[}t
> Liog inf PR, 0N, T;(@)> 5,0(5) € Gy). (3.12)

The following is a modification of Theorem 5.5 from Donsker-Varadhan:”

Theorem 3.2. Suppose that (A) and (B) are satisfied. Let Q € Ps(Q) be such that
q[QUF)=1. Let G, be an open subset of F with a(G,)> 0. Then, for any neighborhood
N of @ in Ps(R2) and any compact subset K of G, it holds that

lim inf § log inf P, (; R0 €N, Tr(@)> t,0 () € G,) == H(Q). (313
This may be of interest by itself. The proof will be deferred for a while.

Proof of Theorem 3.1 The first assertion is a corollary to Theorem 2.1 from Okura,® which
shows that if A is a closed subset of Ps(2) such that g[A] is a tight family in £ (X), then

ljmsup%log supP; (w; R, ,€A) < —grgq H(Q). (3.14)

t—-=,£€|0 xeX

Note that, for any @ € Q", Tz(@)> t implies that R, ,(2r)=1, namely, R, ,€ Zs(2F). Thus,
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eq. (3.10) is reduced to eq. (3.14) with A:=CnPs(Qr) since q[A] is included in compact
set 2 (F). Turning to the lower bound, we take an open subset G, of G such that G;C G and
a(G,)> 0. Since T¢=T; and P,(Tr=T;)=1 (x€G), eq. (3.11) is reduced to eq. (3.13) by
Lemma 3.2. O

In the following, we are concerned with the proof of Theorem 3.2. We need a technical
lemma:

Lemma 3.3. Let @ € P5(Q) be such that H(Q)< « and Q(QF)=1 For any €>0 and any
neitghborhood N of @ in P(Q), there exist Qe Pr(Q) with Q,(Qr)=1 and
ce>0 (k=1,2,...,n) such that Z:zlck:], Q’:=Z:=lcka € N and |HQ)-H(Q)«< &
Proof. 1t is shown in the proof of Lemma 3.4 by Donsker-Varadhan” that there exist
Q. &~ and an &, “-measurable mapping Q3 ® — 7, € P:(Q) such that Q(Q,)=1
for any @ € P5(Q), and Q(w; 7 ,= Q) =1 for any Q € P (). Thus, it holds that

fg 7,dQ ()= Q (3.15)

for every extremal @ € Z;(Q). Since this relation is linear in @, this also holds for any
Q € P5(Q). 1t is also shown in the proof of Theorem 3.5 by Donsker-Varadhan” that there
exists a'nonnegative function 4, on 2 such that H(Q)= f ho(@)dQ (@) for any Q € P5(Q).

In the following, @ is fixed and suppose that H(Q)< oo and @ (2r)=1. Since N is a weak
neighborhood of @, we can find h; € C(2) (j=1,2,...,) such that

N:={Q € 2(Q); Ifh; Q' -fh)-dQ 2€(j=1,2,....)} CN. (3.16)

It follows from eq. (3.15) that Z,(Q2r)=1 Q-a.e. We can take a partition B, (k=1,2,...,%n) of
Q, such that, for each k, @ (B;)> 0 and

sup | [hydito— [hydnaice  (j=0,1,2,...,0). (3.17)

W,0'e By

We can choose w,e By so that 7, (2r)=1. Let Q’:=Z::1cka with ¢,:=Q(B;) and
Qy: =7 4, It follows from eq. (3.17) that

[ h;d@~ [h;dQ'1= [dQ@) [ hjdmo=3;_ QB [ h;dry,l
SE:ﬂfmlfhjdﬂa,—fhjdﬂmtdQ<£
(7=0,1,2,...,1). This implies that |[H(Q)-H(Q)< € and @ e N'C N. 0
By using this lerz;lma and the same argument as in the proof of Theorem 5.5 by

Donsker-Varadhan,”, we can reduce Theorem 3.2 to the following, which is also a
modification of Theorem 5.4 by Donsker-Varadhan:”
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Theorem 3.3. Suppose that (A) and (B) are satisfied. Let Q € Pr(Q) be such that
H(Q)< o and q[QIF)=1 Let G, be an open subset of F with a(G,)> 0. Then, for any
netghborhood N of Q in Ps(Q) and any compact subset K of G, it holds that

liminf 7 log inf P, (; Ryo€ N, T#(@)> t,0(H) € G) = ~H(Q) (3.18)
To prove this we need a technical lemma:

Lemma 3.4. Suppose that (B) is satisfied. Let Q € Ps(R2) be such that H(Q)< oo and
{B)=1 with (:=q[Q) If 0, ) <1 eX) and [ P.WdU®W) Zei(n=1,2,...) for some
constant ¢;>0. Then, for any compact subset K of G, there exists a constant ¢3>0 such
that

inf [ ¢,@)pe(l,z,dy)=cs (3.19)

We omit the proof since it is almost the same as that of Lemma 5.3 by Donsker-
Varadhan,”? where the case G=F=X was treated.

Proof of Theorem 3.3. Note that this theorem has been already proved” in the case where
G=F=X. The proof in our case can be done in a similar manner. We only show the
difference. Let 4:=q[Q). Take a compact set K,C G with #(K,)> 0. Then there exists a
neighborhood N’ of @ such that

Iigll; P.(Rii20EN, Tr(@)> t+2,0(t+2) € Gy)
ZP&E[?G(lsx:dy)Py(Rr‘wEN':TF(a))}“ r,a}(t)EKl)ziél!fpr(l,z, Gl)

for sufficiently large ¢. Let

d
v (w,):=log dgﬂ‘:{g‘;

and D;:={w:R,,eN’,0(f)eK,}.

FP
Since @ (T g>f)=1 for any >0 by Lemma 3.1, we have
[ A @P.(D:n (T (@)> 1)
= [ dQ(@)Puw(D:N{Tr(@)> 1))

Q00 )~
> "
= j;de (@) -/;J,n{rp(wb r}(dew)) Qoo

= [dQ() [ PR 1
0 T r(@)> 1}
> e-r(H(QHE)Q({% W (0,) SH@)+€eynD.N{Tr(@)> t})

> e_r(mo)w)Q({%w(a),t) <H@)+€eynDb,).
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Since @ is ergodic, the rest is the same as in the proof of Theorem 5.4 by Donsker-
Varadhan” if we use Lemma 3.4 above instead of Lemma 5.3 by Donsker-Varadhan.” O
Thus, we have completed the proof for Theorem 3.2. Finally, we provide the proof for the
second half part of the main theorem in Section 2.

Proof of Theorem 2.1 (2). We can assume that /(&)< co without loss of generality. Since
H(Q) is lower semicontinuous, it follows from the contraction principle (3.9) that there
exists @ € Ps(2) such that I(&)=H(Q). Since q[R,,1=L,, and since ¢"'[N] is a neig-
hborhood of @ in (), it follows from eq. (3.11) that

liminf +loginf P! (; Lo € N, T¢(@)> )

= liminf £ loginf P; (@ R,.0€ ¢ "IN}, To(@)> 1

!'—-co,é‘lﬁr

=-H(@Q)=-1(W). O

4. Continuity of the Principal Eigenvalue

Let X and G be as before and let Ve C(G). Let M be a Markov process satisfying (A). A
semigroup {7} on C(G) is defined by

TV f@): = EL[f(@ ®) e "% v o(w)> 1] (Fe CG). (4.1)

Throughout this section we always assume that the following condition holds:

(T) Semigroup {Tfm} is strongly continuous on Cq(G).

Let A”¢ be the infinitesimal generator of {T,V’G} and let 0y ¢ denote the spectrum of A"°.
Since ¢~ log sup T,V‘c 1(x) is subadditive, we can always define

el

Avc[M]=lim }log sugE,[efn""‘“’“”“‘s;rc(m)> fl 4.2)
e IE
The following result is essentially due to Donsker-Varadhan:*

Proposition 4.1. Suppose that (A) and (T) are satisfied.
(1) It holds that Ayc[M]1E€ Oy,
(2) IfRez>Ayc[M1(izeC) then 2¢€ 0y ¢;
(3) Moreover, it holds that

Ao M= sup JV@adu@ -1 (4.3)

[
HEP (D)

We call Ay, c[M] the principal eigenvalue of M for potential V and region G.

Proof of Proposition 4.1. The variational formula (4.3) follows from Corollary 2.1. with
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P;=P,(€>0) and @(,u) f Vdu. The rest is the same as in the proof of Theorem 2.2 by
Donsker-Varadhan.” O

Let 9 denote the totality of all Markov processes M satisfying (A) and (T). Let
C(X; 2 (Q")) denote the space of all continuous mappings of X into 2(Q") endowed with
the compact-open topology. Since any M € 9 satisfies (A), 9 can be considered as a
subset of C(X; 2 (27)). Let My: ={M I : M satisfies (B)}.

Theorem 4.1. The mapping M3 M — Ay c[M]is continuous on M,

Proof. Suppose that a family of Markov processes M®=(Pf) e M (£>0) converges to a
Markov process M= (P,) € 9. It suffices to show that

lim Ay 6[M*1= Ay,c[M]. (4.4)
This follows from (2.8) with @ (&)= j;Vdﬂ, and (4.2) since (A®) is satisfied. O

Example 4.1. We recall the result from Osada,'® where a homogenization problem for the
diffusion processes and operators with random stationary coefficients was investigated. Its
genéral framework also covers the case of periodic or almost periodic coefficients. Let
(Q,‘;‘?‘" ,P) be a probability space and let {f” Y (@xeR?) be a d-dimensional stationary ergodic
flow on Q. Let L*(®2) be the real L*-space on (2,Z,P) and let {U,} denote a strongly
continuous unitary group on L*(Q) defined by U, f(®): =AT,®) @eR?, & € O,fc L*(Q)).
For each i €{1,2,...,d}, let D; denote the infinitesimal generator of {U, } in the i-th direction
with domain Z (D;), namely,

D;-f(dn:zfgwx D) 4=, (4.5)

where the differentiation is taken in the sense of L*(Q). Let H'(Q): —ﬂ .@(D ). For
example, the case of periodic coefficients can be realized as follows: Let 0 *[0 1318
dP(®): =dd (the Lebesgue measure) and 7. @: = @ +x (mod 1). Note that D;=8/3x" in this
particular case.

Let m(®), a7 (@) and & (®)(i,j=1,2,...,d) be real-valued measurable functions on
(f),ﬁ ). Consider a formal differential operator

ij=1 =1

where m (x,®) = m(T, @), a'i"(x, @)=a"(T,®) and b (z,®) =5"(Tzé‘)). Suppose that there exist
positive constants &, ¥ and M, and functions ¢’ € H'(Q)(i,j=1,2, ...,d) such that

(1) l/kSm(@)<k;
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) i}é'}'(é;)ff‘ffz vIEP for all £=(£,...,£%) eR? and 3% (@) <M;

ij=1

3) b'(@) =f}Dja‘f(d)) and I¢” (@)l < M,

d
(4) D'D;b'=0 in the following sense:

i=1

fﬁ f}é"(@)}),-gb(é))ﬁ(dd;) =0 forall ¢ € H (). 4.7
i=1

Then it is known'® (see also Example 5.3 and Remark 5.4 by Okura®) that there exists a
set Q,c Q with P(.@n):l such that, for every @ ef?g, there exists a unique fundamental
solution p‘b(t,:c, y) for 9/ot—A®. The fundamental solution p‘i’(:‘,x, y) is so nice that we can
construct a diffusion (¢.e., continuous Markov) process M@::(Pf’) on X:=R? having
p‘b(:‘,x, y) as its transition density function relative to the Lebesgue measure. For any €50,
let P2¢ denote the probability measure on Q" induced from P2 vy

xf (@):=ewt/e®) (t=0,meQ"). (4.8)
Then for each @ € f)o and £> 0, M. = (P2€) is the diffusion process associated with

_ - 3 [, 14 -\ _0
A®S = m (L, ) z:a ("G )7)+§;b E o2 (4.9)

It is known'® that M? is homogenizable in the following sense: There exists a set 2,C Q,
with P(2,)=1 such that, for each @ € Q,, {P2*} converges to P, in P (Q") as & — 0, where
M: = (P, ) denotes the diffusion process (Brownian motion) generated by

2

A=m' Z}q g :(fﬂﬁzdf’)_l) (4.10)

=1 ' ox’
with (g?) being a certain non-degenerate covariance matrix. Note that M is independent of
@ by the ergodicity of the flow {7,}. It is known® that, for each aJE.Ql, the family
{M®%},,, and M satisfy conditions (A¢) and (AY). Suppose G is an open subset of
X satisfying the outer-cone condition in the following sense: For any x € dG, there exists a
non-empty open cone C,: = C,(k,0) with vertex z such that C,nG=0, where h>0, © c S%,
and

C.(h,0):={x+0ecR’; 0<r<h,0c 6} (4.11)

Since M,M%¢e M, (& € 2,,£>0), we have the following result, which is motivated by
Bensoussan et al.”

Theorem 4.2. Suppose that G is a relatively compact open subset of X satisfying the outer-
cone condition in the above sense. Then it holds that, for any Ve C(G),
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E%AV,G[M@*-&] =AvcIM]1  for P-a.a. ®. (4.12)

Department of Mechanical and System Engineering,
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