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CALCULATION METHOD FOR NONLINEAR DYNAMIC
LEAST-ABSOLUTE DEVIATIONS ESTIMATOR

Kohtaro Hitomi * and Masato Kagihara **

In a nonlinear dynamic model, the consistency and asymptotic normality of the
Nonlinear Least-Absolute Deviations (NLAD) estimator were proved by Weiss (1991),
even though they are difficult to compute in practice. Overcoming this difficulty will
be critical if the NLAD estimator is to become practical. We propose an approxi-
mated NLAD estimator with the same asymptotic properties as the original with the
exception that ours is easier to use.

Key words and phrases: Calculation method, Least absolute deviations estimator,
Nonlinear dynamic model.

1. Introduction

In parametric regression models, the Least-Squares (LS) estimator is
usually used for parameter estimates. If the error term is distributed as
normal, then the LS estimator is a Maximum Likelihood Estimator (MLE)
and attains minimum variance within unbiased estimators. At the same
time, however, it is well known that only one outlier may cause a large
error in an LS estimator. This occurs in the case of fatter tail distributions
of the error term. In such a case, more robust estimators are desirable. One
is the Least-Absolute Deviations (LAD) estimator.

In a linear regression model, a linear programming method is available
as a calculation method for the LAD estimator. On the other hand, in the
nonlinear dynamic model, no computational method is proposed, although
it has been shown theoretically by Weiss (1991) that a Nonlinear LAD
(NLAD) estimator is consistent and asymptotically normal.

Therefore, we seek an approximate estimator of the NLAD estimator
that is practically computable. In a linear case, Hitomi (1997) proposed
an estimator of this kind called the Smoothed LAD (SLAD). ! In order to
obtain an SLAD estimator, he approximated the non-differentiable original
objective function by the smoothed function which is differentiable. That
is, he replaced |z| with v/z2? 4+ d? where d > 0 is the distance from the origin
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1Horowitz (1998) also proposed another SLAD estimator, which has different purposes than ours. In
his article, the main target is not a calculation method of the LAD estimator. In practice, his SLAD

estimator seems to be difficult to compute, as he implied, because it involves an integral of kernel for
nonparametric density estimation.
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Figure 1.

6 T T | T T
y=abs(x) ——
y=sqrt(x2+1) ----

Figure 2.
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(see Figure 1). Then the distance between the original and smoothed objec-
tive functions is equal to or smaller than d for all z. Hitomi (1997) controlled
the parameter d connected with the sample size so that the SLAD estimator
has the same asymptotic properties as the original LAD estimator. In this
article, we extend this method to the nonlinear dynamic model.

In conclusion, we obtained the general calculation method of the NLAD
estimator. We call it the Nonlinear SLAD (NSLAD) estimator.

We introduce a nonlinear dynamic model in Section 2, which was inves-
tigated by Weiss (1991). In Section 3, we prove that the NSLAD estimator
has the same asymptotic properties as the original NLAD estimator un-
der the nonlinear dynamic model and Section 4 presents the results of the
Monte Carlo study. Concluding remarks are given in Section 5. Finally,
our assumptions are described in Appendix A and the sketch of proof that
our model in Section 4 meets assumptions is given in Appendix B.

2. Model
Weiss (1991) considered the following nonlinear dynamic model.

2.1)  y = g(zy, Bo) + ue
g : known function
Ty = (Ye1, - - - s Yt—ps Zt)
2 : vector of exogenous variables
Bo : (k x 1) vector of unknown parameter
u; : unobserved error term which satisfies Median(u; | I;) = 0
I; : o-algebra (information set at period t) generated by

{zi—i} (: > 0) and {w;—;} (i > 1).

Then the NLAD estimator is defined as the solution of the following prob-
lem:

(2.2) mﬁin Qr(B mm — Z lye — g(z, B)].

In these basic settings, Weiss (1991) proved that the NLAD estimator é
was consistent and asymptotically normal under the set of assumptions in

Appendix A.

THEOREM (WEISS(1991)) Under the assumptions described in Ap-
pendiz A,
(2.3) BE By and VT(B-B) 2 N(O,V),
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where
V =D1AD™!
T
T 99, Oge
20 A= SB[ 6]
T
o L 09t . » \ O
(2.5 D—zg&fngpmymxgmbﬁmﬂ,

fi(- | It) : density function of u; conditional on I;.

However, no computational method was proposed by Weiss (1991). This
is critical, and we solved this problem.

Following Hitomi (1997), |y — g¢g(z,8)| is approximated by
V(y—g(z,8))2+d? (d > 0). The NSLAD estimator is defined as the
solution of the following problem which minimizes the smoothed objective
function: 2

2.6 i - , 2.
(2.6) mﬁanT mm Z\/ g(ze, 0))% +

First and second derivatives are (where g:(3) := g(z4, 3))

5QT _ ﬁ) 99
(2.7) Z \/(yt 05"

and

(2.8)

52@% 1 { d2 0g4(B) 9g:(5)
apap T “ 2 422 9B(B) 0

) %—%w> W%wq

VY — 9:(0))? + a2 6590" |

3. Asymptotic properties
3.1. Consistency

The difference between the original and smoothed objective functions
defined in (2.2) and (2.6), respectively, is

(3.1) 0<Q7(8)—Qr(B)<d Vr,y and [
Therefore, if we control the parameter d such that d — 0 as T' — oo,
(32) Sl;p{Q?r(ﬁ) - Qr(B)} —0 as T — oo

2In appropriate conditions, Q7 converges in probability to a smooth function as T' — co to which
Q3. also converges in probability if d — 0 as T" — oo. Therefore it is understandable that the original
NLAD and NSLAD estimator have the same asymptotic properties.
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This implies the following theorem.

THEOREM 1.  Assume the original objective function Qr(3) converges
in probability uniformly in B to a function that is uniquely minimized at
Bo.2 Ifd — 0 as T — oo, then the NSLAD estimator is consistent.

3.2. Asymptotic normality X
The asymptotic normality of the NLAD estimator 3 is mainly based on
the following asymptotic first order condition:

(3.3) =3 sen(ue— () 3 (5

Thus, if the NSLAD estimator also satisfies (3.3), it is asymptotically nor-
mal with the same asymptotic covariance matrix of the original NLAD, ac-
cording to Weiss’(1991) results. Therefore, we have proved that the NSLAD
estimator BS satisfies the condition (3.3) in the followings. Now, note the
NSLAD estimator 3¢ satisfies the first order condition:

(B) = op(1).

1 d yt'—gt(/és) 9gs , -
(8%) = 0.
VTS — a2 + a2 9P

Then, all we have to do is show that the following equation is satisfied:

1 a - Yt — Qt(BS) gy
(35)A:=—= > < sgn(y — g:(6)) - =
VT =1 \/(yt — 9:(%))? + d? o

= Op(l)'
Let 67 be a positive number. Divide the data set into two groups such

that Dy = {t : |ye — g:(6°)| > 67} and Dy = {t : |y — g:(56°)| < 67}. Then
the following inequality holds.

(3.4)

(5

sgn(y, — gi(B°)) — ——im gi(/} ) 9%
ZD V= a2+ a2 199
S t(ﬁs) agt
(3.6) + —= Z sen(y, — 9:(6°)) — =~
\/— t€ Do \/(yt gt(ﬁs + d? “
(57 <( ] ) =3 | %]+ =5 [%BS)
1+ d2/62 teD \/_ teDy op

= Al + AQ.

3Weiss (1991) demonstrated this fact in his nonlinear dynamic model described in Appendix A.
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First, we focus on the term A;. By the Taylor expansion, it follows that

(3.8) 1—”%—%(%)10((%)2).
Hence,
()

0 , 5
(B +

(3.9) A< —*/; (-(%)2 - Z

2
Thus, A; = 0,(1) when /T (5—) — 0 (T — o0) and

Jd
gt [33 L, ¢: a finite constant.

(3.10)

Next, consider the term A, which we regard as a function of 3,

09:

)

(3.11) Ay = Ay(f) = Z (lye — 9:(5°)] < 67)

= \/—T—f tzzl ’wt(és)
where

we(B) 1= 1(=6r + {9:(8) — 9:(Bo)} < ue < 6r + {9:(8) — 9:(5o)}) ” I

and 1(-) represents the indicator function. Here, assume that the condi-
tional density function of u; on I; is bounded from above,

(312) ft(u I [t> < M1 vt, It

agt

and the next condition is satisfied in an open neighborhood By of Sy,

(3.13) lim — ZE “39t < M,V € By
for some real values 0 < Ml, My < co. Then, for V3 € By, we get
(3.14) E(w(B)) = E[E(w:(B) | I)]

< E[“ag’f ) [ 18+ 40u8) - iy < e

< ér+ {gt(ﬁ) - gt(ﬁo)})f(ut l It)dut
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Thus, by the Markov inequality,

(3.15)  P(|A2(B)] =€) < w<—i—M1\/T5T—;—;Zi:E“agt “

€

Therefore, when VT6r — 0 as T — o0, V3 € By Ay () 2 0. }{ence,
invoking the consistency of 3° (Theorem 1), we can conclude that A,(5°) =

0.
From the discussions presented above, A = 0,(1), when the convergence

rate of d satisfies

(3.16) VT ((—%—)2 —0 and VT — 0 (T — o)

and (3.10), (3.12) and (3.13) are satisfied.

THEOREM 2.  Suppose the following conditions are satisfied:
(1) v = g(x¢, Bo) + us, and the conditional median of u; on I, is zero.
(ii) The conditional density of u; on I; is bounded from above for all t, I,
thus, AM, such that for all t, I fi(u| ;) < M;.
(iii) In an open neighborhood By of By for a finite constant M,

hmT__,oo zt 1 “agﬁt (6) < MQ \7’6 € Bo.

and — Zt ) 819875

Furthermore, assume the conditions described in Appendiz A, then VT (B —

Bo) 4N (0,V) for the NLAD estimator 3 (See Section 2). If the smoothing
parameter d satisfies that T%*d — 0, then the NSLAD estimator (3° is
asymptotically normal.

) (60)

VT(B° — o) % N(0, V).

PrROOF. By Weiss’(1991) proof method of the asymptotic normality
of the NLAD estimator, * we can see that all we have to do is show (3.3) for
the NSLAD estimator because the other conditions are implied by nonlinear
dynamic model described in Appendix A. Hence, we have already completed
our proof in the above discussions.

4. Monte Carlo experiments

In this section, we present some examples of the NSLAD estimator and
compare the performance of the NSLAD and nonlinear least-squares (NLS)

4See Weiss (1991) pp.61-63, proof of Theorem 3, especially p.62.
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Table 1.
T = 500 u ~ Normal A(=0.5) B1(=1) B2(=1) ¢(=0.5)
Mean (SLAD) 0.5053 0.9939 0.9969 0.5012

(NLS) 0.5020 1.0069 0.9969 0.4985

Standard Deviation (SLAD) 0.1059 0.1540 0.0622 0.0340
(NLS) 0.0860 0.1251 0.0496 0.0278

Median (SLAD) 05012 0.9952 0.9989 0.5029

(NLS)  0.5029 1.0028 0.9990 0.4985
1st Quartile (SLAD)  0.4307 0.8829 0.9587 0.4788
3rd Quartile 0.5712 1.0878 1.0367 0.5242

(NLS)  0.4417 0.9198 0.9631 0.4783
0.5563 1.0898 1.0292 0.5171

u ~ Laplace
Mean (SLAD) 0.5018 0.9930 1.0009 0.5006
(NLS) 0.5005 1.0052 0.9995 0.4983

Standard Deviation (SLAD) 0.0691 0.0965 0.0394 0.0213
(NLS) 0.0884 0.1253 0.0511 0.0271

Median (SLAD) 0.5002 0.9923 1.0017 0.5008
(NLS) 0.4977 1.0032 1.0022 0.4991

1st Quartile (SLAD) 0.4543 0.9311 0.9776 0.4874
3rd Quartile 0.5457 1.0536 1.0262 0.5154

(NLS) 0.4376 0.9181 0.9652 0.4808
0.5610 1.0865 1.0345 0.5175

estimators. These experiments are conducted in the following nonlinear
dynamic model, which satisfies the assumptions given in Appendix A. ® We

set 81 = FGo=1,A=¢=0.5and yo =0.

22— 1
(4.1) Yt = QY1 + B + ﬂ2tT + Uy.

We generated u; from two distributions. One is the standard normal dis-
tribution, where the NLS estimator becomes MLE, and the other is the
Laplace distribution, where the NLAD estimator is MLE. The density
of the Laplace distribution, whose variance is adjusted to 1, is f,(u) =
exp(—v2Ju|)/v/2. Median(u) = 0, V(u) = 1, where V(-) indicates a vari-
ance. Next, let z be distributed as a uniform distribution: z ~ U(0,9/2).
Note: this makes V((z} —1)/A) =1 =V (u).

The experiments are examined under the following conditions: (1) The
number of replications is 1,000. (2) The sample sizes (T') are 50, 100, 200,

5See Appendix B.
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Table 2.
T = 200 u ~ Normal A B1 B2 ¢
Mean (SLAD) 0.5219 0.9849 0.9905 0.5015

(NLS) 0.5133 1.0141 0.9908 0.4955

Standard Deviation (SLAD) 0.1834 0.2281 0.1053 0.0515
(NLS) 0.1429 0.1884 0.0824 0.0430

Median (SLAD) 0.5060 0.9756 0.9995 0.5010
(NLS) 0.5063 1.0159 0.9952 0.4945

1st Quartile (SLAD) 0.4012 0.8226 0.9231 0.4683
3rd Quartile 0.6397 1.1380 1.0613 0.5369

(NLS) 0.4126 0.8913 0.9364 0.4655
0.6127 1.1408 1.0466 0.5262

u ~ Laplace
Mean (SLAD) 0.5079 0.9845 1.0008 0.5019
(NLS) 0.5077 1.0049 0.9972 0.4977

Standard Deviation (SLAD) 0.1144 0.1581 0.0653 0.0347
(NLS) 0.1459 0.1895 0.0813 0.0418

Median (SLAD) 0.5017 0.9768 1.0033 0.5029
(NLS) 0.4994 1.0002 0.9990 0.4973

1st Quartile (SLAD) 0.4323 0.8748 0.9589 0.4783
3rd Quartile 0.5837 1.0808 1.0434 0.5248

(NLS) 0.4122 0.8792 0.9429 0.4704
0.5983 1.1238 1.0561 0.5270

and 500. (3) The smoothing parameter is, d = T~!, which satisfies the
conditions of Theorems 1 and 2.

The results are reported in the following tables. Each table is reported
in the same format. The upper block of this table shows a case with an
error term distribution that is standard normal, and the lower block shows a
case with the Laplace distribution. In each block, for the NLS and NSLAD
estimators, the sample mean, standard deviation, median, and 1st and 3rd
quartiles are reported.

The bias becomes negligible as the sample size increases, and there are
no differences between the NSLAD and NLS estimators if attention is fo-
cused exclusively on this point. In terms of standard deviations, the NLS
estimator has a smaller standard deviation when the error term’s distribu-
tion is standard normal, and the NSLAD estimator has a smaller standard
deviation when the error term’s distribution is the Laplace distribution.
When the error term is distributed as standard normal, standard devia-
tions of the NSLAD estimators are about 20% larger than those of the NLS
estimators and at most 28.3% larger in the estimate of A as T' = 200. When
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Table 3.
T =100 u ~ Normal A 61 B2 ¢
Mean (SLAD) 0.5401 0.9847 0.9834 0.4984

(NLS) 0.5237 1.0274 0.9839 0.4899

Standard Deviation (SLAD) 0.2565 0.3252 0.1427 0.0742
(NLS) 0.2069 0.2640 0.1158 0.0596

Median (SLAD)  0.5152 0.9417 0.9941 0.5040
(NLS)  0.5098 1.0269 0.9882 0.4907

1st Quartile (SLAD) 0.3756 0.7428 0.8982 0.4557
3rd Quartile 0.6817 1.1952 1.0854 0.5484

(NLS) 0.3835 0.8395 0.9100 0.4496
0.6371 1.2011 1.0622 0.5300

u ~ Laplace
Mean (SLAD) 0.5235 0.9760 0.9930 0.5028
(NLS) 0.5189 1.0187 0.9865 0.4938

Standard Deviation (SLAD) 0.1730 0.2197 0.1017 0.0501
(NLS) 0.2012 0.2612 0.1148 0.0591

Median (SLAD)  0.5160 0.9640 0.9981 0.5041
(NLS)  0.5055 1.0135 0.9923 0.4944

1st Quartile (SLAD) 0.4206 0.8257 0.9369 0.4699
3rd Quartile 0.6190 1.1127 1.0572 0.5387
(NLS) 0.3899 0.8478 0.9156 0.4520

0.6302 1.1828 1.0673 0.5329

the error term is distributed as the Laplace distribution, standard devia-
tions of the NLS estimators are 10% — 30% larger than those of the NSLAD
estimators, and the largest difference is 65.7% larger in the estimate of A
as T = 50. The second largest is 29.8% larger in the estimate of ; as
T = 500. With respect to median and quartiles, there are no differences
between the NLS and NSLAD estimators regarding their performances. Fi-
nally, we compare the computing time of the NLS and NSLAD estimators.
The average computing time of the NLS and NSLAD estimators is 0.35 and
0.47 seconds, respectively, when T' = 500 with the standard normal error,
and also 0.35 and 0.42 seconds when 7' = 500 with the Laplace error. In
the same manner, the average computing time of the NLS and NSLAD esti-
mators is 0.28 and 0.37 seconds, respectively, when T = 200 with standard
normal, and also 0.28 and 0.33 seconds when 7' = 200 with the Laplace
distribution. Similarly, when T' = 100 and 50, the NSLAD estimate takes
about 30% as much time as the NLS estimate with standard normal, and
takes about 20% as much time as the NLS estimate with the Laplace distri-
bution. We use GAUSS for Windows (32 bit), Version 3.2.38., and GAUSS
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Table 4.
T =50 u ~ Normal )\ B B2 o]
Mean (SLAD) 0.5520 0.9905 0.9705 0.5002

(NLS) 0.5281 1.0380 0.9808 0.4887

Standard Deviation (SLAD) 0.4773 0.4344 0.2496 0.1064
(NLS) 0.3931 0.3717 0.2094 0.0874

Median (SLAD) 0.4895 0.9134 0.9956 0.5102
(NLS) 0.4759 1.0267 0.9895 0.4939

1st Quartile (SLAD) 0.2550 0.6938 0.8074 0.4308
3rd Quartile 0.7687 1.2481 1.1416 0.5777

(NLS) 0.2828 0.7783 0.8613 0.4317
0.7274 1.2903 1.1226 0.5501
u ~ Laplace
Mean (SLAD) 0.5133 0.9624 1.0026 0.5053
(NLS) 0.5455 1.0264 0.9814 0.4919

Standard Deviation (SLAD) 0.3300 0.2952 0.1915 0.0731
(NLS)  0.5468 0.3445 0.2029 0.0826

Median (SLAD) 0.4993 0.9159 1.0154 0.5104
(NLS) 0.5000 1.0113 0.9880 0.4943

1st Quartile (SLAD) 0.2964 0.7483 0.8967 0.4608
3rd Quartile 0.6853 1.1311 1.1273 0.5574

(NLS)  0.2747 0.7812 0.8560 0.4369
0.7255 1.2624 1.1193 0.5485

Applications Optimization to conduct these experiments in an environment
with a CPU that has a PentiumlIl, 400MHz, and 64MB memory. |

From these results, we can conclude that the NSLAD estimator per-
formed very well and equal to the NLS estimator.

5. Concluding remarks

The aim of this article is on the actual usage of the NLAD estimator,
which has attractive properties such as robustness. The problem lies in
computational difficulty. Therefore, we proposed an NSLAD estimator,
a generalization of Hitomi’s(1997) SLAD estimator, which is practically
computable and has the same asymptotic properties as the NLAD estimator
in Weiss’(1991) nonlinear dynamic model. The Monte Carlo experiment
implies a good performance of the NSLAD estimator, at least equal to the
NLS estimator.

Consequently we obtained a computable approximate to the NLAD es-
timator, which we called the NSLAD estimator, and the NLAD and NSLAD
estimators have the same asymptotic properties.
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Appendix A: Set of Assumptions
In this section, we described the set of assumptions under which Weiss
(1991) demonstrated the consistency and asymptotic normality of the NLAD
estimator. The basic model has already been introduced in Section 2.

ASSUMPTION. In the model (2.1),
(i) (Probability space) (T,F,P) is a complete probability space and
{ug, 74}, are random vectors on this space.

(ii) (Parameter space) Let B be a compact subset of Euclidean space R,
and [ is interior to B.

(iii) (Regression function) g(z, ) is measurable in z for each 8 € B and
is A-smooth in @ with variables Ag; and function p. © V;g,(8) is A-
smooth with variables A;; and functions p;,7 = 1,...,k. In addition,
max; p;(s) < s for s > 0 small enough. 7

(iv) (Conditional distribution of w;) fi(- | 1) is Lipschitz continuous uni-
formly in ¢, and for each ¢, u, fy(u | I;) is continuous in its parameter.
Furthermore there exist A > 0 such that for all ¢, and some constant
P >0, P(fi(0] I;) > h) > py.

(v) (Unconditional density) An unconditional density f; of (u, z;) is con-
tinuous in its parameter at every point for each ¢.

(vi) There exists A < oo and r > 2 such that a(m) < Am? for some
A < —2r/(r — 2), where a(-) stands the usual measure of dependence
for a-mixing random variables on (Y,.F, P) with respect to the o-
algebras generated by {uy, z;}.

(vii) (Dominance conditions) ? For all ¢,i, E|supg Ai|” < Ay < oo . There
exist measurable functions a4, ag; such that |V;g:(0)| < aw,i=1,...,
k,|ft] < as and for all ¢, [ aydudz, < oo and [ af,asdudz, < co.

(viii) (Asymptotic stationarity) There exists a matrix A such that
T S E[Vg(6)V'9:(Bo)] — A as T — oo, uniformly in a.

(ix) (Identification condition) There exists 6 > 0 such that for all 8 € B and
T sufficiently large, det(T~*>" E[Vg:(B8)V'g:(8) | f:(0] L) > h]) > 6.

Appendix B: Confirming Assumptions in Our Model
In this section we briefly sketch a proof that our model in Section 4
meets the assumptions described in Appendix A

6g(xt, 3) is A-smooth with variables A; and function p if, for each 3 € B, there is a constant 7 > 0
such that ||3 — B|| < 7 implies that |g:(8) — g:(8)| < Ae(xe)p(||G — B|)) for all t a.s., where A; and p
are nonrandom functions such that limsupy_, ., T X E[A¢(zt)] < 0o, p(y) > 0 for y > 0, p(y) — 0 as
y — 0.

TVi:=8/0B; (i=1,...,k), V:=0/9p.

8ft(- | It) is a density function of u; conditional on I;.

9For a consistent result, these conditions are replaced by the following: There exist measurable
functions aot, a1t such that |g+(8)| < aot, |Vige(B) < a1s,i =1,...,k, where Elaj:|"™d <A < o00,j=0,1
for some rg > 1,71 > 2. The other conditions can be relaxed.
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First, we begin with Assumption 2. Weset —1+c < ¢ <1 —¢,c <
A<1l-c(0<ec<1l)and —C < (1,0, < C (0 < C < o0). Note
that the parameter space and the support of z are bounded. For Assump-
tion 3, we use the Taylor expansions, and for Assumption 4, we can show

|f(uz) — f(u1)| < |uz — u1| and f(u) > h is trivial. As to Assumption 6,
1

we transformed our model as follows: y} = -Q—yz‘_l + =D o i M= s.t.

yr =1y —22v2—-1), m=u+2(,/z —V2) ~ iid. To this transformed
model, we apply Theorem 14.9 in Davidson (1994) p.219. For Assumption
7, note an unconditional density f; = f because y; is stationary. We can
see that E[Vg,(8)V'g:(8)] < oo for Assumption 8, and E[Vg(8)V'g:(5)]
is nonsingular in Assumption 9.
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