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New Formulas on Orthogonal Functionals of Stochastic
Binary Sequence with Unequal Probability

Lan GAO', Nonmember and Junichi NAKAYAMA', Member

SUMMARY  This paper deals with an orthogonal functional
expansion of a non-linear stochastic functional of a stationary
binary sequence taking 41 with unequal probability. Several
mathematical formulas, such as multivariate orthogonal polyno-
mials, recurrence formula and generating function, are given in
explicit form. A formula of an orthogonal functional expan-
sion for a stochastic functional is presented; the completeness of
expansion is discussed in Appendix.
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1. Introduction

This paper deals with an orthogonal functional expan-
sion of a stochastic functional of a stationary binary
sequence. Such a sequence is a mathematical model of
digital signals in communication engineering, but it has
important applications to physical problems.

Recently, waves in binary random media and scat-
tering from binary rough surfaces have received much
interest, because the Anderson localization[1],[2] in
such media becomes a physical principle of new optical
devices[3], and because digital data are stored by sur-
face deformations called pits in recording devices such
as a compact disk. In principle, these binary random
media and rough surfaces may be modeled by a sta-
tionary binary sequence, which takes two values with
unequal probability in many cases. Since the wave field
in such a medium may be considered as a stochastic
functional of a binary sequence, we need a systematic
theory of a stochastic functional of binary sequences to
represent the wave field.

A theory of a stochastic functional of binary se-
quences was first introduced by Ogura[4] as a close
analogy to the Wiener-Hermite expansion[5], where a
method of constructing multivariate orthogonal poly-
nomials and mathematical definition of orthogonal
stochastic functionals were discussed but no explicit for-
mulas were given. On the other hand, Aracil[6] and
others [7] studied a stochastic functional of binary and
ternary signals as a method of nonlinear system iden-
tification. In a previous paper[8], however, we gave
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several explicit formulas on the multivariate orthogonal
polynomials associated with a binary sequence, which
were successfully applied to the wave scattering from a
binary rough surface[9].

In these works[4],[6]-[9], however, discussions
were restricted to a special case where a binary sequence
takes two values with equal probability. Removing such
restriction, we obtain an explicit formula of the multi-
variate orthogonal polynomials, recurrence formula and
generating function for an unequal probability case.
We present a formula of an orthogonal functional ex-
pansion for a stochastic functional, the completeness
of which is discussed in Appendix. We also discuss
an example of orthogonal functional expansion and a
stationary sequence generated by the staticnary binary
sequence.

2. Multivariate Orthogonal Polynomials

Let {b;,7 = 0,%1,+2,---} be an independent stationary
binary sequence taking +1 with unequal probability

14+u 1—p
=—— Pl=-1)= ——, 1
;o Plhi=-1=—F
where real u is the average parameter with |u| < 1. One
easily finds the average and correlation

(bi) =t (b — p)(bj — p)) = (1 = p*)58(3,7), (2)

where the angle brackets denote ensemble average and
6(i,j) is the Kronecker delta. If {i1,is, - ,%,,} is a
distinct set of integers, b;,, b;,, -+, b;  are mutually in-
dependent, so that one easily finds

((biy — p)(biy — 1) - -+ (b, — p)) = 0. (3)

When {41,142, ,%m} and {j1,72, -, Jn} are two dis-
tinct sets of integers, we get an orthogonality relation

P(b; =1)

™

((biy — 1) (biy — ) -+ (bs,, — 1)
“(bjy — p)(bjy — ) -+~ (b, — 1))
= (1= p?)"8(m,n)6™ (4, 7), (4)
8™ (i, 5) = Y 8(ir, i) D 8liz, jis)
b 1
X oeee X Z 8(tm, J1.,, ) Q)

Im=1
ImaFla,la,ylm -
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where 6(m)(i, j) involves m! terms. The relation (4)
may be proved in terms of the moment generating func-

tion[&].
_ Let us define multivariate orthogonal polynomials
{Bp,(biy 1 bigy -+ by 1y b, )ym =0,1,2,-- -} associated

with the binary sequence. However, it should be noted
that, for example, b;b; is a second order polynomial
for 7 % j, but becomes a constant b;b; = 1 when i = j.
Taking this fact in mind, we introduce a binary function

A (’il,iz,’" 1m) by
m(zlylZ; ©yim )
—1
:[1— 6zm,zk}ll—252m 1,%}
k=1
X -oo X [1—=8(ig, i) — 6(is,11)][1 — 6(42,i1)]
(31,42, -+, im are all distinct)

L,
= {0, ©
which vanishes for m-dimensional diagonal arguments.
Then, we define the multivariate orthogonal polynomi-
als by

( any other case ) ’

BO :1 él(bz) :bi—,u,
(b'z:b)_[ = 6(4,)](bi — p)(b; — ),
m(bn:bzz)"' zm):Am(ilai%'":im)

X(b'il - )(bw - :LL) t (bzm - M): (7)
which are symmetrical with respect to their variables.

However, these polynomials may be obtained from a
generating function ) as

B, (biy; bigy e+, b))

a 0 7]
= 535 Q (8)
ti Otiy bim liomtag=tao==0
The generating function ¢ is formally given as
Q=[] I+ ®—u-tl, ©)
k=—o0

which may be derived later. Since dt,,/0t; = 6(1,m),

one easily gets (7) from (8). Manipulating (7) and (6),

we find the recurrence formula,

B (biy bizs -+, biy)
= BTHJ71(bl17 b’wa e

m—1

+2p Z Bu1(biy, by, -
=1

m—1
- 2) ZBm~2(bi1= ) bil~17bil+17 ) bimq)
=1

m—1m—1

> 8(im, i1)6(ik, 1)

=1 k=1

Kl
bi1+17"'ab’im_1>' (10)
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X5(im,iz) + (1 —

XBm—Q(bila . .’b.
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Using (3), (4) and (7), we easily find averages and or-
thogonality relation of the multivariate polynomials,

< (b117b177"')bim 17b' )> :6(ma0)7 (11)
< (bh?b127"'7bim)B (bhvbhv"'?bjn))
- (1 — MZ)nAm(ila T 7'Lm>An(]17 T a]n)
x&(m, n)6™ (i, 5), (12)

which holds for any non-negative integers m and n. We
note that (7)—(10) are new formulas obtained in this
paper. When p = 0 and the binary sequence takes %1
with equal probability, these formulas are reduced to
formulas in Reference[8].

3. Orthogonal Functional Expansion

We assume a sample point w is an infinitely dimensional
vector

ab—27b—labOab1>"'> wi=bi7 (13)

w= (-

where w; is the i-th component of w. Also, we assume
that the sample space  is made up of all such sample
points. Then, any function of w implies a functional of
the binary sequence {b;}. By P(w) and L%(Q, P), we
denote the probability measure[10] on € and the class
of functions g(w) with

lg(@)II? = {g(w)[*) < oo, (14)

respectively. Here, || e || denotes norm.
For g(w) € L*(, P), we have an orthogonal func-
tional expansion

) =go+ Z 91(k)B1(bx) +
k=—co
+ Z gm ZlaZZ7 512 )Bm(bilabiga”'abim)
1117427'71711
T (15)

which holds in ensemble mean square sense and may
be proved in Appendix. Because the binary func-
tion A(iy,4g, - ,%y,) and the multivariate polynomial
B (bi,,biy, -+, by, ) vanish for m-dimensional diagonal
arguments, the diagonal components of the kernel func-
tions are indefinite. Because of the symmetry of mul-
tivariate polynomials, the kernel functions may not be
determined uniquely. However, we always assume that
the kernel functions have zero-diagonal components and
are symmetrical with respect to their arguments. Then,
such zero-diagonal symmetrical kernel functions are ob-
tained uniquely from (6), (12) and (15) as

(g(w) B (biy, -+, bi,))
(1 — p2)ym™m! !

gm(ily' te ,Zm) = (16)
m=0,-+1,42, .

Since (15) is complete, one gets the Parseval relation,
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<|9(w)12>=Z(1— )"m!
m=0
< g, (17)

As a simple example, let us consider the orthogonal
functional expansion of

_exp< Z fi(k ) . (18)

k=—cc

It Y372 [Relfi (k)]
g(w) belongs to L*(2, P). Equation (18) is regarded as
the output of a cascade system involving a linear filter
and an exponential nonlinear for the input of binary
sequence. However, this example gives the generating
function @ for By, (b;,, bi,, -+, b; i ). By (16) and (18),
we may calculate the kernel functions

‘ < oo, Re being the real part,

o0

go= T {coshlf: (k)] + usinhlf; ()]},
k=—co
Gm(i1,02, i) = gOAm(il’{ - ,im)tiltiz R T
m!

" 1+ ptanh[fi (k)]

Substituting the result (19) into (15), we get the orthog-
onal functional expansion,

gw) = go+ P 1 Zthl br) + ZtktlB2 (bw, br)

+§ > titjteBa(bi, by, by) + - (20)
T ik

On the other hand, this expansion can be derived by
another method. For b, = +1, we find an identity

ef1 (P ={cosh] f, (k)] +psinh[ f1 (k)] }[1+ (be—p)te],
where {j, is given by (19). Then we have

o) = g0 [ 11+ telbe— )

k=—oc0

= go + 9o Ztk(bk — 1)
k

+g0 Y tuti(bs — ) (b — 1)

k<l

+g0 Y titjtr(bi—

1<g<k

) (b — ) (b —p) =+,

2n

which is the same expansion as (20). Equating (20) to
(21), we find the generating function @ in (9).
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4. Stationary Sequence

We have considered the functional expansion of a
stochastic functional g(w), which is a random variable.
This section discusses a stationary sequence generated
by the stationary binary sequence.

Let us define the shift from a sample point w to
another sample point Tw in the sample space 2 by

T-b;=biy1, Tw=(--,b_1,by,b1,be, ). (22)

Because {b;} is an independent stationary sequence[11],
if a sample sequence w exists with P(w), the shifted
sequence Tw must exist with the same probability
P(Tw) = P(w), which means measure-preserving.
Thus, the shift 7' is a measure-preserving transforma-
tion in  with properties: 70 = 1(identity); T™T™ =
T™+" where m and n are any integers. Furthermore,
for any random variable g(w), g(T"w) is a stationary
sequence and becomes ergodic[10],[11]. Applying the
shift to the multivariate polynomials, we obtain

TP By, (b bi,.)
Virp148: Vi) (23)

where § is any integer. Using (23) and (15), we obtain
the functional expansion for g(T”w)

ilvbiza"'abim—w

= Bm<bi1+ﬁa big+ﬁa )

9(TPw) = go + Z g1(k — B) - By (br)

k=00
+ Y ga(k—B,1=B) - Boby,by) +---,  (24)
kl=c0

which is a stationary sequence generated from the bi-
nary sequence {b;}. The correlation function may be
easily calculated as

(9(TPw)g*(w))
=l #1004 3 g

Zgz (k—B,1—B)gs (k, 1) +
k=l

1(k — 8)gi (k)
+21(1 —

(25)

where asterisk means the complex conjugate. Note that
any statistical properties of g(7”w) can be obtained
from one sample sequence, because g(T*w) is ergodic.

5. Conclusion

By formal discussions, we have obtained new formulas
concerning the multivariate orthogonal polynomials of
a stationary binary sequence taking £1 with unequal
probability. Further, we have obtained a formula on
orthogonal functional expansion of a stochastic func-
tional. Since these formulas are given in explicit form,
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they can be applied to various problems in random the-
ory, such as wave scattering from random media and
rough surfaces, and non-linear system identification us-
ing the input of binary sequence. However, these appli-
cations will be left for future study.
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Appendix: Functional Expansion

This appendix briefly describes a proof of the functional
expansion (15). However, we start with a special case,
where g(w) = g@®M*+D(w) is a step function of special
type such that g®?+1)(w) depends on only the 2M + 1
variables: b_p7,b_ara1,- -+, bo,b1,- -+, bas, and is inde-
pendent of other variables. Such a function is repre-
sented in terms of the multivariate polynomials as[10]

(2M+1) (w) — g(2M+1) (

g bomy by, bar)

M
=go+ Y, gilk)Bi(br,)
J—Yi

M
+ Z 92(k1,7€2)32(5k1,bk2>+"'
by ko=—M
M

+ Z 92M+1(k17k2>"'7k2M+1)
k1,k2,kampr=—M

X Boars1(biy s by - kanrs1)s (A1)

which should be understood™ as a special case of
(15) Hel'e, do, gl(_M)s gl(_M + 1)7"'agl(M)7 g2
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(=M, —=M),-, gopss1 (M, M,---, M) are coefficients,
the number of which is reduced to 22M*!  be-
cause gm(ki1,ko, -+, km) 1s symmetrical and zero-
diagonal. These coefficients are uniquely determined
from g@M V(b 4y, b pri1, -+, bar) when by’s take 1
independently. Therefore, (A-1) holds for each vector
(b_arsb_ari1,---,bar) and hence it is valid in L*(Q2, P)
sense. Thus, we have proved (15) for a step function of
special type.

Let us prove (15) for a general case. First, we in-
troduce a transformation

M M
2CMED = 7 1 Zbk2—2k4+2 1 +Qb—k2—zk_
k=0 k=1

(A-2)

Here, (1 + by)/2 is a bit and x3M+Y is a (2M + 1)-
bit binary number, which runs over {m/2***+1 m =
0,1,2,---,2*M+1 1}, When M goes to infinity, w and
Q are transformed into a real number x = 2(>) and the
interval Qp = [0,1]. Also, P(w), g(w) and g®M+1)(w)
are transformed into P(z), §(z) and §?*Y(z) on
the interval g, respectively. Here, §*¥+1)(z) is con-
stant in an interval: m/22M+1 < o < (m +1)/22M+L,
m = 0,1,2,---,22M+1 — 1 Also, L*(2, P) is trans-
formed into L?(Qg, P) with |jg(w)]| = ||g(z)]|. Obvi-
ously, there is one-by-one correspondence between g(xz)
and g(w) in ensemble mean square sense.

It is known that any function g(z) belonging
to L?(Qgr, P) is approximated arbitrarily closely in
L%(Qg, P) sense by a step function (™ (z), which may
be written as[5],[11]

O=xg <z <" <zy1<zNy =1,

§M(@) =5,  n <z < Dngs. (A-3)

Thus, for any € > 0, there exists §7¥)(z) such that

13(z) — d™(@)|| < e

On the other hand, such a step function V) (z) is ap-
proximated arbitrarily closely by a step function of spe-
cial type g@M+1)(z). Thus, there is @M+ (z) satisfy-
ing

(A-4)

1M (z) — gBM D (2)]] <e.

This is obvious when §V)(x) and g™+ (z) are func-
tions on the real axis. From (A-4) and (A-5), we ob-
tain

1) — gV @)]| £ [1g(z) — 3™ (@)l

(A-5)

HIgW () = gV ()] < 2. (A-6)
Since ¢ is arbitrary, this means that
lim {|g(w) — g*M D (w)]| = 0. (A7)
M —o00

Therefore, the functional expansion (15) is complete in
L?(Q, P) sense and the Parseval relation (17) holds.



