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Scattering of TE Plane Wave from Periodic Grating with Single
Defect

Kazuhiro HATTORI†a) and Junichi NAKAYAMA†b), Members

SUMMARY This paper deals with the scattering of TE plane wave
from a periodic grating with single defect, of which position is known.
The surface is perfectly conductive and made up with a periodic array of
rectangular grooves and a defect where a groove is not formed. By use of
the modal expansion method, the field inside grooves is expressed as a sum
of guided modes with unknown amplitudes. The mode amplitudes are re-
garded as a sum of the base component and the perturbed component due to
the defect, where the base component is the solution in case of the perfectly
periodic grating. An equation for the base component is obtained in the first
step. By use of the base component, a new equation for the perturbed com-
ponent is derived in the second step. A new representation of the optical
theorem, relating the total scattering cross section with the reduction of the
scattering amplitude is obtained. Also, a single scattering approximation is
proposed to express the scattered field. By use of truncation, we numeri-
cally obtain the base component and the perturbed component, in terms of
which the total scattering cross section and the differential scattering cross
section are calculated and illustrated in figures.
key words: scattering, periodic grating, defect, TE plane wave, rectangu-
lar grooves, single scattering approximation

1. Introduction

In electronics, many devices such as memory chips and
LCD electrodes have periodic structure with rectangular
parallel lines. Defects in such periodic structure have been a
serious problem for years. As a simple model of the periodic
structure with defect, this paper studies the wave scattering
from a periodic array of grooves with single defect shown
in Fig. 1. This problem is practically important for develop-
ping an optical method of measurement and inspection.

There are many works [1]–[7] on the scattering and
diffraction by a single groove, a finite number of grooves
and a periodic array of grooves without any defects. How-
ever, there has not been studied the scattering from a peri-
odic grating with defects.

This paper deals with the scattering of TE plane wave
from a one-dimensional periodic grating with single defect,
of which position is known. The surface is perfectly con-
ductive and made up with a periodic array of rectangular
grooves and a defect where a groove is not formed. By
use of the modal expansion method [8], the field inside the
grooves is expressed as a sum of guided modes with un-
known mode amplitudes. The mode amplitudes are regarded
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Fig. 1 Scattering of TE plane wave from a periodic grating with single
defect. The surface is a periodic array of rectangular grooves and has a de-
fect where a groove is not formed. ψi(x, z) is the incident wave and ψs(x, z)
is the scattered wave. θ is the angle of incidence, φ is the scattering angle,
L is the period of surface, w and d are the width and the depth of groove.

as a sum of the base components and the perturbed compo-
nents due to the defect, where the base component is the so-
lution in case of the perfectly periodic grating without any
defect. An equation for the base component is obtained in
the first step. By use of the base component, a new equation
for the perturbed component is derived in the second step.

We obtain a new representation of the optical theorem,
which relates the total scattering cross section with the re-
duction of the scattering amplitude. To evaluate the scatter-
ing property approximately, we introduce a single scattering
approximation, which is written only by the base component
of the guided modes.

By use of truncation, we numerically obtain the base
component and the perturbed component, in terms of which
the total scattering cross section and the differential scatter-
ing cross section are calculated and illustrated in figures.

2. Mathematical Formulation of the Problem

2.1 Periodic Grating with Single Defect

Let us consider a periodic array of rectangular grooves with
a single defect at x = 0 (See Fig. 1). We write such an array
as

z = f (x) = −d

⎡⎢⎢⎢⎢⎢⎣ ∞∑
n=−∞

u(x−nL|w)− u(x|w)

⎤⎥⎥⎥⎥⎥⎦ , (1)

where L is the period, w and d are the width and the depth
of the groove. Here, u(x|w) is a rectangular groove defined

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



HATTORI and NAKAYAMA: SCATTERING OF TE PLANE WAVE FROM PERIODIC GRATING WITH SINGLE DEFECT
313

as

u(x|w) =

{
1, |x| ≤ w/2,
0, |x| > w/2. (2)

It has the orthogonal property such that

u(x − mL|w)u(x − nL|w) = δmnu(x − mL|w),

(m, n = 0,±1,±2, · · ·), (3)

where δmn is Kronecker’s delta. The Fourier transform of
u(x|w) is calculated as

U(q) =
∫ ∞

−∞
u(x|w)e−iqxdx = 2

sin(qw/2)
qw

w, (4)

which will be used later to obtain the scattered field.
For convenience, we put kL and kw as

kw =
π

w
, kL =

2π
L
, (5)

and we define an auxiliary function sl(q) as follows.

sl(q) =
∫ ∞

−∞
u(x|w) sin(lkw(x + w/2))e−iqxdx (6)

=
1
2i

[
U(q−lkw)eilπ/2−U(q+lkw)e−ilπ/2

]
, (7)

where l is integer. Figure 2 illustrates sl(q) for l = 1, 4, 7
with width the w = 1.3λ, where λ is wavelength. sl(q) be-
comes a real even function for odd integer l, and an imagi-
nary odd function for even integer l. Note that sl(q) ∼ 1/q2

when |q| becomes large. This auxiliary function sl(q) takes
the phase shift by e−iqmL with the shift of x by mL.∫ ∞

−∞
u(x−mL|w) sin(lkw(x+w/2−mL))e−iqxdx

= e−iqmLsl(q). (8)

We denote the y component of the electric field by
Ψ(x, z), which satisfies the Helmholtz equation[

∂2

∂x2
+
∂2

∂z2
+ k2

]
Ψ(x, z) = 0, (9)

Fig. 2 Auxiliary function sl(q) against wave number q for l = 1, 4, 7 with
width w = 1.3λ, λ is wavelength.

in the region z > f (x). Here, k = 2π/λ is wavenumber.
We consider that the surface is perfectly conductive. On the
surface z = f (x), the wave fieldΨ(x, z) satisfies the Dirichlet
condition,

Ψ(x, z)|z= f (x) = 0. (10)

We write the incident plane wave ψi(x, z) as

ψi(x, z) = eipxe−iβ0(p)z, p = −k cos θ, (11)

βm(p) = β0(p+mkL) =
√

k2−(p+kLm)2, (12)

Im[βm(p)] ≥ 0, (m = 0,±1,±2, · · ·), (13)

where θ is the angle of incidence (See Fig. 1) and Im stands
for imaginary part.

2.2 Diffraction from a Perfectly Periodic Grating

First, we consider a perfectly periodic case without defect.
We write such a perfectly periodic surface fp(x) as

z = fp(x) = −d
∞∑

n=−∞
u(x−nL|w). (14)

For the region z ≥ 0, we put the y component of the
electric field Ψ̂1(x, z) as a sum of the incident wave ψi(x, z)
and the diffracted wave ψd(x, z) due to the periodicity of the
surface,

Ψ̂1(x, z)=eipxe−iβ0(p)z+ ψd(x, z), (15)

ψd(x, z)=eipx
∞∑

m=−∞
AmeimkL x+iβm(p)z. (16)

Here, Am is the amplitude of the mth order diffracted wave.
On the other hand, by use of the modal expansion method
[8], we write the y component of the electric field inside the
grooves Ψ̂2(x, z) as a sum of the guided modes,

Ψ̂2(x, z) =
∞∑

n=−∞
u(x − nL|w)eipnL

⎡⎢⎢⎢⎢⎢⎣ ∞∑
l=1

Qs
l

× sin(lkw(x+w/2−nL))
sin(γl(z+d))

γl

]
, (17)

γl =

√
k2 −

(
πl
w

)2

, (18)

where Qs
l is the amplitude of the guided mode which we

call the base component, and γl is the propagation constant
of the lth guided mode. Note that the number of the guided
modes starts from l = 1 since there is no constant mode for
TE case.

Let us obtain the energy conservation relation
for the perfectly periodic case. Using the identity
Im[divΨ̂1gradΨ̂∗1] = 0 and the fact that Ψ̂1gradΨ̂∗1 is a pe-
riodic function with the period L, we obtain after some ma-
nipulation,

Im

[∫ L/2

−L/2
Ψ̂1(x, z)

∂

∂z
Ψ̂∗1(x, z)dx

]
=0, (19)
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where z > 0. Substituting (15) and (16) into (19), we get

β0(p) =
∞∑

m=−∞
Re[βm(p)]|Am|2, (20)

which is the well known energy conservation relation. Here,
Re stands for the real part and Re[βm(p)]|Am|2 is the mth or-
der diffraction power, which will be illustrated below.

2.3 Solution for a Perfectly Periodic Grating

Let us determine Am and Qs
l from the continuity of both the

electric field and the magnetic field at z = 0.
From Ψ̂1(x, 0) = Ψ̂2(x, 0), we get

eipx

⎡⎢⎢⎢⎢⎢⎣1 + ∞∑
m=−∞

AmeimkL x

⎤⎥⎥⎥⎥⎥⎦
=

∞∑
n=−∞

u(x−nL|w)eipnL ×
⎡⎢⎢⎢⎢⎢⎣ ∞∑

l=1

Qs
l

× sin(lkw(x+w/2−nL))
sin(γld)
γl

]
. (21)

Multiplying e−imkL x and integrating over one period L, we
get

Am = −δm0+
1
L

∞∑
l=1

Qs
l

sin(γld)
γl

sl(p+mkL). (22)

Next, from
∑

n�0 u(x − nL|w)[∂Ψ̂1/∂z − ∂Ψ̂2/∂z]z=0 = 0, we
get

∞∑
n=−∞

u(x−nL|w)eipx

×
⎡⎢⎢⎢⎢⎢⎣−iβ0(p)+i

∞∑
m=−∞

βm(p)AmeimkL x

⎤⎥⎥⎥⎥⎥⎦
=

∞∑
n=−∞

u(x−nL|w)eipnL
∞∑

l=1

Qs
l

× sin(lkw(x+w/2−nL)) cos(γld). (23)

Taking Fourier transform after multiplying u(x − mL|w)
× sin(lkw(x + w/2 − mL)), we obtain

i
∞∑

m=−∞
βm(p)Amsl(−p−mkL)

= iβ0(p)sl(−p)+
wQs

l

2
cos(γld). (24)

From (22) and (24), Am and Qs
l can be determined. Note

that for the normal incidence θ = 90◦ (p = 0), Qs
l vanishes

for even numbers l = 2, 4, 6, · · · since sl(0) in the right hand
side of (24) becomes 0 for even l and βm(0)Am sl(−mkL) and
β−m(0)A−msl(mkL) cancel each other. This will be discussed
later.

In the following section, we will obtain the scattered
wave by using Ψ̂1(x, z) and Ψ̂2(x, z).

2.4 Scattering from a Periodic Grating with Single Defect

A single defect in a periodic grating generates the scatter-
ing. We express such scattering as a perturbation from the
diffracted wave for the perfectly periodic case. Thus, we
write for z > 0,

Ψ1(x, z)= Ψ̂1(x, z) + ψs(x, z), (25)

ψs(x, z)=eipx
∫ ∞

−∞
a(s)eisx+iβ0(p+s)zds, (26)

where ψs(x, z) is the scattered wave due to the defect and
a(s) is the amplitude of the scattered wave. Since ψs(x, z)
is scattered from the single defect, ψs(x, z) satisfies the ra-
diation condition, that is, ψs ∼ eikr/

√
r (r =

√
x2 + z2) and

decays at r → ∞. This property will be used below.
On the other hand, we write the wave field inside the

grooves Ψ2(x, z) as a sum of the wave field for the perfectly
periodic grating and the fluctuated term ψg(x, z) due to the
defect.

Ψ2(x, z) = Ψ̂2(x, z) + ψg(x, z),

ψg(x, z)=
∞∑

n=−∞
u(x−nL|w)eipnL

×
∞∑

l=1

q(n)
l sin(lkw(x+w/2−nL))

sin(γl(z+d))
γl

−u(x|w)
∞∑

l=1

Qs
l sin(lkw(x+w/2))

sin(γl(z+d))
γl

. (27)

Here, q(n)
l is the perturbed amplitude of the lth guided mode

in the nth groove. Note that q(0)
l ≡ 0 for all l since a groove

is not formed at n = 0.

2.5 Optical Theorem and Scattering Cross Section

Let us obtain the optical theorem for the single defect
case. Since ψs(x, z) decays proportional to (x2 + z2)−1/4,
Ψ̂1gradψ∗s , ψsgradΨ̂∗1 and ψsgradψ∗s vanish at |x| → ∞. Fur-
ther, Ψ̂1gradΨ̂∗1 is a periodic function of x with the period L.
Using these facts and the identity Im[div(Ψ̂1 +ψs)grad(Ψ̂1 +

ψs)∗] = 0, we obtain after some manipulation,

lim
N→∞Im

⎡⎢⎢⎢⎢⎢⎣
∫ (N+ 1

2 )L

−(N+ 1
2 )L
Ψ1(x, z)

∂

∂z
Ψ∗1(x, z)dx

⎤⎥⎥⎥⎥⎥⎦
= lim

N→∞Im

⎡⎢⎢⎢⎢⎢⎣
∫ (N+ 1

2 )L

−(N+ 1
2 )L
Ψ̂1(x, z)

∂

∂z
ψ∗s(x, z)

+ψs(x, z)
∂

∂z
Ψ̂∗1(x, z)+ψs(x, z)

∂

∂z
ψ∗s(x, z)dx

]
=0,

(28)

where z > 0. Here, we have applied (19).
Substituting (15), (16) and (26) into (28), we get a new

representation of the optical theorem, which is written as
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Pc = Φs, (29)

Pc = −2
k

∞∑
m=−∞

Re[β∗m(p)]Re[a(kLm)A∗m], (30)

Φs =
1
k

∫ ∞

−∞
Re[β0(p + s)]|a(s)|2ds. (31)

Here, Pc is related to the reduction of the scattering ampli-
tude and Φs expresses the total scattering cross section. The
optical theorem (29) can be used to estimate accuracy of a
numerical calculation. It is an extension of the forward scat-
tering theorem [9], [10]. The total scattering cross section
can be rewritten as

1
k

∫ ∞

−∞
Re[β0(p+s)]|a(s)|2ds =

L
2π

∫ π

0
σ(φ|θ)dφ, (32)

where φ is the scattering angle and σ(φ|θ) is the differential
scattering cross section per period,

σ(φ|θ) = 2πk sin2 φ |a(−k cosφ − p)|2
L

, (33)

which has no dimension.

2.6 Scattered Wave Field and Single Scattering Approxi-
mation

In this section, we determine a(s) and q(n)
l to solve the single

defect case. From the continuity of both the electric field
and the magnetic field, the equations to obtain a(s) and q(n)

l
are derived.

Since Ψ1(x, 0) = Ψ2(x, 0) means ψs(x, 0) = ψg(x, 0),
we get

eipx
∫ ∞

−∞
a(s)eisxds =

∞∑
n=−∞

u(x−nL|w)eipnL

×
∞∑

l=1

q(n)
l sin(lkw(x+w/2−nL))

sin(γld)
γl

−u(x|w)
∞∑

l=1

Qs
l sin(lkw(x+w/2))

sin(γld)
γl

. (34)

Taking Fourier transform after multiplying e−i(p+s′)x/2π, we
obtain the amplitude of the scattered wave a(s) as

a(s) =
1

2π

∞∑
l=1

sl(p + s)
sin(γld)
γl

×
⎡⎢⎢⎢⎢⎢⎣ ∞∑

n=−∞
e−isnLq(n)

l − Qs
l

⎤⎥⎥⎥⎥⎥⎦. (35)

When the depth d is not so large that the resonance does
not occur in the grooves of the grating, the term related to
the first order guided mode l = 1 may become large. How-
ever, when the resonance occurs in the grooves, that is, the
value of the depth d satisfies sin(γ1d) = 0, the summation
on l starts from l = 2, so the property of the scattering may
become different. In such a case, the term related to the sec-
ond order guided mode l = 2 may give large effect in the

scattering. This will be discussed later.
On the other hand, from

∑
n�0 u(x − nL|w)[∂Ψ1/∂z −

∂Ψ2/∂z]z=0 = 0, we obtain
∑

n�0 u(x − nL|w)[∂ψs/∂z −
∂ψg/∂z]z=0 = 0. Then, we get

∞∑
n=−∞

u(x−nL|w)eipx
∫ ∞

−∞
iβ0(p+s)a(s)eisxds

−u(x|w)eipx
∫ ∞

−∞
iβ0(p+s)a(s)eisxds

=

∞∑
n=−∞

u(x − nL|w)eipnL
∞∑

l=1

q(n)
l

× sin(lkw(x+w/2−nL)) cos(γld). (36)

Taking Fourier transform after multiplying u(x − mL|w)
× sin(lkw(x + w/2 − mL)), we obtain

i (1−δm0)
∫ ∞

−∞
β0(p+s)sl(−p−s)eismLa(s)ds

=
w

2
cos(γld)q(m)

l . (37)

Substituting (35) into (37), we get the equation for the per-
turbed component q(n)

l as

∞∑
j=1

∞∑
n=−∞

Clm( j, n)q(n)
j

=

∞∑
j=1

Qs
j

[
Clm( j, 0) + δm0δl j

w

2
cos(γld)

]
. (38)

Here, Qs
j is the base component obtained from (22) and (24),

and Clm( j, n) is given as

Clm( j, n)= (1−δm0)
i

2π

sin(γ jd)

γ j
e−ip(m−n)L

×
∫ ∞

−∞
β0(s′)sl(−s′)s j(s′)eis′(m−n)Lds′

−δmnδl j
w

2
cos(γld), (39)

where the integral can be easily evaluated numerically be-
cause the integrand decays proportional to 1/s′3 when |s′| →
∞. Here, Clm( j, n) represents coupling between the jth
guided mode at the nth groove and the lth guided mode at
the mth groove. Note that Clm( j, n) is independent of p. We
will calculate Clm( j, n) numerically to solve (38) for the per-
turbed component q(n)

l , in terms of which a(s) is calculated.

On the other hand, if q(n)
l is small, the approximated

amplitude of the scattered wave â(s) could be calculated
from (35) only with Qs

l as

â(s) = − 1
2π

∞∑
l=1

sl(p + s)
sin(γld)
γl

Qs
l , (40)

which we call the single scattering approximation. â(s)
is written only by the base component Qs

l neglecting
q(n)

l , which is the effect of coupling between neighboring
grooves. We will compare this single scattering approxima-
tion â(s) with numerical solution a(s) in what follows.
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3. Numerical Examples

Let us obtain some numerical examples for L = 2λ.
Since (38) is a linear equation for infinitely many un-

known q(n)
l , it is still an open question how to solve (38).

However, we attempt to solve this by use of truncation. We
introduce the truncation number Nd of the diffraction orders,
the truncation number Nm of the guided modes inside the
groove and the number of the grooves Ng. This means that
we assume

Am = 0, |m| > Nd,
Qs

l = 0, l > Nm,

q(n)
l = 0, |n| > Ng, l > Nm,

(41)

in the summation (22) and (24) and we take into account the
perturbed effect in the grooves between n = −Ng and Ng, In
this paper, we set

Nd = 7, Nm = 15, Ng = 7. (42)

Thus, [Am] becomes a (2Nd + 1) vector, [Qs
l ] becomes an

Nm vector and [q(n)
l ] becomes an (Nm) × (2Ng + 1) matrix

in the calculation below. We numerically calculate the base
component Qs

l and Clm( j, n) to solve (38) for the perturbed

Fig. 3 Relative diffraction power against the angle of incidence θ for
depths d = 0.1λ (upper figure), 0.542λ (lower figure) with period L = 2λ
and width w = 1.3λ, λ is wavelength. Power of incident wave is normal-
ized to 1. In the upper figure for d = 0.1λ, ‘[x5]’ means that values are
multiplied by 5 and ‘[x20]’ means that values are multiplied by 20.

component q(n)
l . Then, we obtain a numerical solution a(s)

to calculate the optical theorem and the scattering cross sec-
tion.

First, we consider the perfectly periodic case. Figure 3
illustrates the relative diffraction power against the angle
of incidence θ for the depths d = 0.1λ (upper figure) and
d = 0.542λ (lower figure) with the width w = 1.3λ. The
power of incident wave is normalized to 1. The line ‘(0)’
means the relative power of the 0th order Floquet mode, i.e.,
Re[β0(p)]|A0|2/β0(p), and the line ‘(1)’ that of the 1st or-
der Floquet mode, and so on. The energy error is always
less than 10−14 in these cases. It suggests that the truncation
numbers Nd and Nm are sufficient for the perfectly periodic
case. For d = 0.1λ, the power of the 0th mode is quite large.
However, for d = 0.542λ, which satisfies sin(γ1d) = 0, the
powers of the −2nd mode and the −3rd mode become large
and that of the 0th mode decreases when the angle of inci-
dence is between 30◦ and 70◦.

For the case with single defect, we calculate the optical
theorem by truncating the number of the grooves with Ng.
Figure 4 illustrates the total scattering cross section Φs and
the reduction of the scattering amplitude Pc against the an-
gle of incidence θ for the widths w = 0.7λ, 1.0λ, 1.3λ with
the depths d = 0.1λ (upper figure) and 0.542λ (lower fig-

Fig. 4 Optical theorem against the angle of incidence θ for widths w =
0.7λ, 1.0λ, 1.3λ with period L = 2λ, depth d = 0.1λ (upper figure) and
d = 0.542λ (lower figure), λ is wavelength. Total scattering cross section
Φs is drawn with line, while the reduction of scattering amplitude Pc is
shown with dots.



HATTORI and NAKAYAMA: SCATTERING OF TE PLANE WAVE FROM PERIODIC GRATING WITH SINGLE DEFECT
317

Fig. 5 Differential scattering cross section σ(φ|θ) for widths w = 0.7λ,
1.0λ, 1.3λ with period L = 2λ, and depth d = 0.1λ, angle of incidence
θ = 60◦, λ is wavelength.

ure). The total scattering cross section is drawn with lines,
while the reduction of scattering amplitude is shown with
dots. In both figures, the total scattering cross section Φs

almost agrees with the reduction of the scattering amplitude
Pc in three cases of w. However, there are some cases in
which relative error Erropt = |(Ψs − Pc)/Pc| becomes large.
For d = 0.1λ, Erropt is less than 0.01, but, it becomes ap-
proximately 0.02 when θ is close to 60◦ where the 1st mode
appears and the −3th mode disappears. For d = 0.542λ,
Erropt is less than 0.02, but, it becomes approximately 0.1
when θ is close to 60◦, and becomes approximately 0.2 when
θ is close to 90◦ where the 2nd mode appears and the −2nd
mode disappears. When θ < 20◦, Erropt increases up to
0.1 for both cases of d. These facts suggest that the trunca-
tion in (38) gives a reasonable solution in general, but is not
good enough for several cases. Thus, practical methods of
approximation must be studied to solve (38).

Figure 5 illustrates the differential scattering cross sec-
tion σ(φ|θ) for the widths w = 0.7λ, 1.0λ, 1.3λ with the
depth d = 0.1λ and the angle of incidence θ = 60◦. The
differential scattering cross section is determined by sl(q) in
(35), which is the spectrum of the groove with the width w.
Figure 6 illustrates σ(φ|θ) when the widths of the groove are
relatively small (w = 0.1λ and w = 0.5λ) with the angle of
incidence θ = 60◦. Calculations are done for two cases of
the depths d = 0.1λ and 0.2λ. For w = 0.1λ, which is much
smaller than the half wavelength, all order guided modes in-
side the grooves become cutoff. This makes little difference
in the differential scattering cross section for different val-
ues of the depth d. Figure 7 illustrates σ(φ|θ) for the angles
of incidence θ = 90◦, 60◦, 30◦ with the width w = 1.3λ and
the depths d = 0.1λ (upper figure) and 0.542λ (lower fig-
ure). It is found that for d = 0.1λ, scattering is relatively
strong in the direction of specular reflection. However, for
d = 0.542λ, the differential scattering cross section seems
symmetric with respect to φ = 90◦. It may be due to the
fact that the resonance inside the grooves depends on the

Fig. 6 Differential scattering cross section σ(φ|θ) when the widths of the
groove are relatively small (w = 0.1λ and 0.5λ) with period L = 2λ, angle
of incidence θ = 60◦ and depths d = 0.1λ and 0.2λ, λ is wavelength.

Fig. 7 Differential scattering cross section σ(φ|θ) for angles of incidence
θ = 90◦, 60◦, 30◦ with period L = 2λ, width w = 1.3λ, depth d = 0.1λ
(upper figure) and 0.542λ (lower figure), λ is wavelength.

depth d and the width w, but is independent of the angle of
incidence θ. In these cases, the term related to the second
order guided mode (mainly s2(p+ s)) in (35) becomes large.
For θ = 90◦, the scattering amplitude becomes small due to
the fact that Qs

2 vanishes for the normal incidence and the
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Fig. 8 Differential scattering cross section σ(φ|θ) for depths d = 0.1λ,
0.271λ, 0.542λ with period L = 2λ, and width w = 1.3λ and angle of
incidence θ = 60◦, λ is wavelength.

term related to the third order guided mode determines the
scattering property. Figure 8 illustrates σ(φ|θ) for the depths
d = 0.1λ, 0.271λ, 0.542λ with w = 1.3λ and θ = 60◦. For
d = 0.1λ and 0.271λ, the differential scattering cross sec-
tion increases as the depth d becomes large and the forward
scattering around the direction of the specular reflection is
relatively strong. However, for d = 0.542λ, the differential
scattering cross section is smaller than that for d = 0.271λ
around the direction of specular reflection.

Figure 9 examines the single scattering approximation
(40). Comparison of the numerical solution with the sin-
gle scattering approximation is illustrated for the depths
d = 0.1λ (upper figure) and 0.542λ (lower figure) with the
width w = 1.3λ and θ = 60◦. For d = 0.1λ, the single scat-
tering approximation (40) almost agrees with the numeri-
cal solution, which takes q(n)

l into account. However, for
d = 0.542λ, the agreement becomes worse since some rip-
ples appear in the scattering cross section due to the effect
of the perturbed component q(n)

l . It may suggest that when
the depth of the grooves is not large the interaction between
neighboring grooves may be small for TE incidence.

4. Conclusions

We considered a one-dimensional periodic grating with sin-
gle defect, of which position is known. We took TE
plane wave as an incidence, wrote the wave field above the
grooves as a perturbation from the diffracted wave for the
perfectly periodic case. We derived two sets of equations
to determine the wave field from the boundary condition,
and we obtained a new representation of the optical theo-
rem, which relates the total scattering cross section with the
reduction of the scattering amplitude. Further, we proposed
the single scattering approximation given only by the base
components for the perfectly periodic grating.

We found that the differential scattering cross section
is determined by the spectrum of the groove. This prop-
erty may be applicable to the measurement of the condi-

Fig. 9 Comparison of numerical solution with the single scattering ap-
proximation for depths d = 0.1λ (upper figure) and 0.542λ (lower figure),
for period L = 2λ, width w = 1.3λ and angle of incidence θ = 60◦, λ is
wavelength. The approximation is shown in dotted lines.

tion of surfaces combining with the other polarization. We
found that when the guided mode in the grooves becomes
resonant, the differential scattering cross section becomes
almost symmetric even for oblique incidence. We found the
single scattering approximation is useful when the depth of
the groove is small.

In this paper, we obtained the scattered wave by use of
truncation, and there are several cases in which relative error
with respect to the optical theorem becomes large. It means
that our truncation method is not good enough and practical
methods of approximation must be studied to obtain a highly
accurate solution.

Our discussion was limited to the case of TE incidence.
It can be extended to TM case [11]. In this paper, we consid-
ered the single defect case in the periodic grating. However,
there are other mathematical models of periodic grating with
defects: one is a case with double or finite number of defects
which positions are known. Another is a case with random
defects, that is, the defect probability is known but their po-
sitions are unknown. It is theoretically interesting to con-
sider such periodic gratings with defects. However, those
cases will be left for the future studies.
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