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LETTER

Wave Scattering from a Periodic Surface with Finite

Extent: A Periodic Approach for TM Wave

Junichi NAKAYAMA†a), Regular Member, Toyofumi MORIYAMA†, Nonmember,
and Jiro YAMAKITA††, Regular Member

SUMMARY A periodic approach introduced previously is
applied to the TM wave scattering from a finite periodic surface.
A mathematical relation is proposed to estimate the scattering
amplitude from the diffraction amplitude for the periodic sur-
face, where the periodic surface is defined as a superposition of
surface profiles generated by displacing the finite periodic surface
by every integer multiple of the period Λ. From numerical ex-
amples, it is concluded that the scattering cross section for the
finite periodic surface can be well estimated from the diffraction
amplitude for a sufficiently large Λ.
key words: wave scattering and di�raction, �nite periodic sur-

face, periodic grating

1. Introduction

The wave scattering from a finite periodic surface has
received much interest, because it is related with im-
portant applications such as diffraction gratings, leaky
wave antenna and waveguide couplers. Several meth-
ods of analysis have been introduced by authors [1]–[6].
As an idea of analysis, however, we introduced a pe-
riodic approach, which was successfully applied to the
TE wave case [7]. This paper deals with an application
of the periodic approach to the TM wave scattering
from a sinusoidal surface with finite extent.

In the periodic approach, we first generate the pe-
riodic surface by translating the finite periodic surface
by every integer multiple of a distance Λ and super-
imposing the translated ones. Then, we calculate the
diffracted wave by such a periodic surface with the pe-
riod Λ. When the period Λ goes to infinity, such a pe-
riodic surface becomes the finite periodic surface and
hence the diffracted wave physically becomes the scat-
tered wave from the finite periodic surface. Therefore,
the scattered wave from the finite periodic surface may
be well estimated from the diffracted wave for a suffi-
ciently large Λ. The estimation is done by a mathemat-
ical formula connecting the scattering amplitude and
diffraction amplitude. We propose here such a mathe-
matical formula suitable for the TM wave incidence.

Manuscript received May 8, 2001.
†The authors are with the Faculty of Engineering and

Design, Kyoto Institute of Technology, Kyoto-shi, 606-8585
Japan.

††The author is with the Faculty of Information Engi-
neering, Okayama Prefecture University, Soja-shi, 719-1197
Japan.

a) E-mail: nakayama@dj.kit.ac.jp

For several values of the period Λ, we numeri-
cally calculate the diffraction amplitude, from which
the scattering amplitude and the scattering cross sec-
tion are estimated. It is demonstrated that the scat-
tering amplitude is almost independent of Λ when Λ
is large. Then, we conclude that the scattering cross
section for the finite periodic surface can be well esti-
mated from the diffraction amplitude for a sufficiently
large Λ.

2. Diffraction by Periodic Surface

Let us start with a sinusoidal surface with finite extent:

z = f(x) =
{
σh · sin(kLx), |x| ≤W/2
0, |x| > W/2 , (1)

kL =
2π
L
, (2)

where σh is the corrugation height, W is the width of
periodic corrugation and L is the period. Translating
f(x) by every integer multiple of Λ and superimposing
the translated ones, we obtain the periodic surface as

z = fp(x) = fp(x+ Λ) =
∞∑

n=−∞
f(x+ nΛ), (3)

where Λ �W is implicitly assumed.
We write the y component of the magnetic field by

ψ(x, z), which satisfies the wave equation[
∂2

∂x2
+

∂2

∂z2
+ k2

]
ψ(x, z) = 0, (4)

in free space and the boundary condition

∂

∂n
ψ(x, z) = 0, z = fp(x), (5)

on the periodic surface (3). Here, ∂/∂n is the normal
derivative, k = 2π/λ is the wave number and λ is the
wavelength. We write the magnetic field as

ψ(x, z) = e−ipxe−iβ(p)z + e−ipxe+iβ(p)z

+ ψd(x, z,Λ), (6)

where the first term in the right hand side is the inci-
dent plane wave, the second is the specularly reflected
wave, and ψd(x, z,Λ) is the diffracted wave due to the
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Fig. 1 Scattering and diffraction of a plane wave from a peri-
odic surface with the period Λ. θi is the angle of incidence and
θs is a scattering angle. W is the corrugation width of a partially
periodic surface. When the period Λ goes to infinity, the periodic
surface becomes a finite periodic surface.

corrugation (3). Here, p and β(p) are given by

p = k · cos θi, (7)

β(p) =
√
k2 − p2, Im [β(p)] ≥ 0, (8)

where θi is the angle of incidence (See Fig. 1) and Im
stands for the imaginary part.

Since the surface (3) is periodic, the diffracted
wave ψd(x, z,Λ) may have the Floquet form:

ψd(x, z,Λ) =
e−ipx

2π

∞∑
m=−∞

kΛ · a(mkΛ,Λ)

×e−imkΛx+iβ(p+mkΛ)z, (9)

where kΛ · a(mkΛ,Λ)/(2π) = a(mkΛ,Λ)/Λ is the wave
amplitude diffracted into the direction θm given by

cos(θm) = − cos(θi) −
m

k
kΛ, kΛ =

2π
Λ
. (10)

In what follows, we regard a(mkΛ,Λ) is the sample
value of a(s,Λ) at s = mkΛ, whereas a(s,Λ) for any
s will be estimated by interpolation from the sample
sequence {a(mkΛ,Λ), m = 0,±1,±2, · · ·}. Note that
(9) becomes an integral when kΛ = 2π/Λ → 0.

Since the periodic surface and free space are loss-
less, the energy conservation law holds:

1
2πβ(p)

∞∑
m=−∞

Re[β(p+mkΛ)]|a(mkΛ,Λ)|2kΛ

+ 2Re[a(0,Λ)] = 0, (11)

where Re stands for the real part.

3. Estimation of the Scattering Amplitude
from the Diffraction Amplitude

When Λ → ∞, the periodic surface fp(x) becomes the
finite sinusoidal surface f(x), and the diffracted wave
ψd(x, z,Λ) becomes the scattered wave from the finite
sinusoidal surface f(x). As kΛ = 2π/Λ → 0, the Flo-
quet form (9) is reduced to an integral representation

of the scattered wave [7]

ψs(x, z) = lim
Λ→∞

ψd(x, z,Λ)

=
e−ipx

2π

∫ ∞

−∞
a(s,∞)e−isx+iβ(p+s)zds,

(12)

where a(s,∞) = limΛ→∞ a(s,Λ) is the scattering am-
plitude.

On the other hand, the diffraction amplitude
a(mkΛ ,Λ) /Λ is physically expected to be propor-
tional to 1/Λ, because the number of finite corruga-
tions per unit length is 1/Λ. Therefore, a(s,Λ) is al-
most independent of Λ when Λ is large enough and wave
interactions between finite corrugations become negli-
gibly small. This means that the scattering amplitude
a(s,∞) may be well approximated by a(s,Λ) when Λ
is large.

To estimate a(s,Λ) from the diffraction amplitude,
we proposed an interpolation formula [7], which works
well only for TE wave case. For the TM case, however,
we introduce another interpolation formula:

β(p+ s)a(s,Λ)

=
∞∑

m=−∞
β(p+mkΛ)a(mkΛ,Λ)

sin
[
s−mkΛ

2 Λ
]

[
s−mkΛ

2 Λ
] . (13)

By use of (13), we obtain ψs(x, z,Λ) an approximate
expression for the scattered wave,

ψs(x, z,Λ) =
e−ipx

2π

∫ ∞

−∞
a(s,Λ)e−isx+iβ(p+s)zds.

(14)

The interpolation formula (13) may be derived as
follows. Expressions (9) and (14) are valid in a region
with z ≥ σh=max{f(x)}. Assuming that ψd(x, z,Λ),
ψs(x, z,Λ), and their derivatives may be calculated
from (9) and (14) even at z = 0, however, we put

∂ψs(x, z,Λ)
∂z

∣∣∣∣
z=0

=

{
∂ψd(x,z,Λ)

∂z

∣∣∣
z=0

, |x| < Λ/2
0, |x| > Λ/2

,

(15)

of which Fourier transform yields (13).
From (14) we obtain the energy conservation law:

kW

2πβ(p)

∫ π

0

σ(θs|θi)dθs + 2Re[a(0,Λ)] = 0, (16)

σ(θs|θi) =
k2 sin2(θs)

kW
|a(−k cos θi − k · cos θs,Λ)|2,

(17)

where σ(θs|θi) is the scattering cross section and θs is
a scattering angle (See Fig. 1).

We have expected that a(s,Λ) is almost indepen-
dent of Λ. To evaluate this numerically, we introduce
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Fig. 2 Scattering cross section σ(θs|θi) estimated from the diffraction amplitude
{a(mkΛ,Λ)} by interpolation. θi = 60◦, W = 20L, L = 2.5λ, σh = 0.1λ. (A) Λ = 250λ,
(B) Λ = 1000λ.

the distance ρ(Λ,Λ′) between a(s,Λ) and a(s,Λ′) as

ρ(Λ,Λ′) =
||a(s,Λ) − a(s,Λ′)||√
||a(s,Λ)|| · ||a(s,Λ′)||

, (18)

||a(s,Λ)||2 =
1
k

∫ ∞

−∞
|β(p+ s)a(s,Λ)|2ds, (19)

where the weighted norm ||a(s,Λ)|| is easily evaluated
in terms of {a(mkΛ,Λ)} by (13).

4. Numerical Results and Conclusions

For numerical calculations we put

L = 2.5λ, W = 20L, σh = 0.1λ. (20)

Four different values of the period Λ are consid-
ered: Λ = 125λ, 250λ, 500λ and 1000λ. By the
method of Green’s theorem in Ref. [8], we determine
{a(mkΛ,Λ)/Λ} with an energy error less than 0.5%,
where {a(mkΛ,Λ)/Λ} is approximated by a (4Λ/λ+1)-
dimensional vector. From {a(mkΛ,Λ)}, we estimate
the amplitude a(s,Λ) by the interpolation formula (13)
to obtain the scattering cross section σ(θs|θi) illus-
trated in Fig. 2. In case of Fig. 2 with θi = 60◦,
there are major peaks at scattering angles 45.6◦, 72.5◦,
95.7◦, 120.00◦ and 154.2◦, which are effects of diffrac-
tion by the periodic corrugation (1) with the period
L = 2.5λ. We see that Fig. 2(A) for Λ = 250λ agrees
well with Fig. 2(B) for Λ = 1000λ. We also calcu-
lated the norm ||a(s,Λ)|| and the distance ρ(Λ,Λ′) nu-
merically for θi = 60◦. The norm ||a(s,Λ)|| slightly
decreases when Λ increases: ||a(s,Λ)|| is 29.5018 for
Λ = 125λ, 29.4912 for Λ = 250λ, 29.4904 for Λ = 500λ
and 29.4900 for Λ = 1000λ. We found that the dis-
tances are also small: ρ(125λ, 1000λ) = 1.045 × 10−3,
ρ(250λ, 1000λ) = 3.411 × 10−4, and ρ(500λ, 1000λ) =
1.983 × 10−4. For other angles of incidence, numeri-
cal calculations were carried out also. Then we found
that, in case of (20), a(s,Λ) and σ(θs|θi) can be well
estimated by the interpolation (13) if the period Λ is
larger than 250λ.

We have applied the periodic approach introduced
in Ref. [7] to the TM wave scattering from a finite pe-
riodic surface. We propose an interpolation formula to
estimate the scattering amplitude for the finite periodic
surface from the diffraction amplitude. From numeri-
cal examples, it is concluded that the scattering cross
section for the finite periodic surface can be well esti-
mated from the diffraction amplitude for a sufficiently
large Λ.

The periodic approach may be applied to the elec-
tromagnetic wave scattering from a dielectric periodic
surface with finite extent, if the interpolation formula
is modified appropriately. However, a rigorous mathe-
matical treatment and conditions under which the pe-
riodic approach works are still open question. These
problems are left for future study.
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