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[LETTER

Wave Scattering from a Periodic Surface with Finite
Extent: A Periodic Approach for TM Wave

Junichi NAKAYAMA?), Regular Member, Toyofumi MORIYAMAT, Nonmember,

SUMMARY A periodic approach introduced previously is
applied to the TM wave scattering from a finite periodic surface.
A mathematical relation is proposed to estimate the scattering
amplitude from the diffraction amplitude for the periodic sur-
face, where the periodic surface is defined as a superposition of
surface profiles generated by displacing the finite periodic surface
by every integer multiple of the period A. From numerical ex-
amples, it is concluded that the scattering cross section for the
finite periodic surface can be well estimated from the diffraction
amplitude for a sufficiently large A.
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1. Introduction

The wave scattering from a finite periodic surface has
received much interest, because it is related with im-
portant applications such as diffraction gratings, leaky
wave antenna and waveguide couplers. Several meth-
ods of analysis have been introduced by authors [1]-[6].
As an idea of analysis, however, we introduced a pe-
riodic approach, which was successfully applied to the
TE wave case [7]. This paper deals with an application
of the periodic approach to the TM wave scattering
from a sinusoidal surface with finite extent.

In the periodic approach, we first generate the pe-
riodic surface by translating the finite periodic surface
by every integer multiple of a distance A and super-
imposing the translated ones. Then, we calculate the
diffracted wave by such a periodic surface with the pe-
riod A. When the period A goes to infinity, such a pe-
riodic surface becomes the finite periodic surface and
hence the diffracted wave physically becomes the scat-
tered wave from the finite periodic surface. Therefore,
the scattered wave from the finite periodic surface may
be well estimated from the diffracted wave for a suffi-
ciently large A. The estimation is done by a mathemat-
ical formula connecting the scattering amplitude and
diffraction amplitude. We propose here such a mathe-
matical formula suitable for the TM wave incidence.
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For several values of the period A, we numeri-
cally calculate the diffraction amplitude, from which
the scattering amplitude and the scattering cross sec-
tion are estimated. It is demonstrated that the scat-
tering amplitude is almost independent of A when A
is large. Then, we conclude that the scattering cross
section for the finite periodic surface can be well esti-
mated from the diffraction amplitude for a sufficiently
large A.

2. Diffraction by Periodic Surface

Let us start with a sinusoidal surface with finite extent:

= ) = { gjl -sin(krx), m § %@ ’ (1)
b=, @

where o}, is the corrugation height, W is the width of
periodic corrugation and L is the period. Translating
f(x) by every integer multiple of A and superimposing
the translated ones, we obtain the periodic surface as

z= fp(x) = fp(x +A) =

Z flz+nh),  (3)
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where A > W is implicitly assumed.
We write the y component of the magnetic field by
¥ (z, z), which satisfies the wave equation
0? 0?
k? =0 4
o+ g+ vle) =0 (@)

in free space and the boundary condition

0
Sb(@.2) =0, 2= fy(a), (5)

on the periodic surface (3). Here, /0n is the normal
derivative, k = 2w /) is the wave number and A is the
wavelength. We write the magnetic field as

w(Z,Z) — e—ipxe—iﬂ(p)z + e—ipwe-l—iﬁ(p)z
+ Ya(z, 2, A), (6)
where the first term in the right hand side is the inci-

dent plane wave, the second is the specularly reflected
wave, and ¥4(z, z,A) is the diffracted wave due to the



1616

AW

Fig.1 Scattering and diffraction of a plane wave from a peri-
odic surface with the period A. 6; is the angle of incidence and
05 is a scattering angle. W is the corrugation width of a partially
periodic surface. When the period A goes to infinity, the periodic
surface becomes a finite periodic surface.

le——ro A ——>

corrugation (3). Here, p and ((p) are given by
p=k-cosb;, (7)

= k2 —p2, Im[B(p)] > 0, (8)

where 6, is the angle of incidence (See Fig.1) and Im
stands for the imaginary part.

Since the surface (3) is periodic, the diffracted
wave ¥4(z, z, A) may have the Floquet form:

—zp;c

ba(x, 2, A) = Z kn - a(mka, A)

m=—0o0

Xefimk,\rqtiﬁ(pqukA)z, (9)

where kp - a(mkp,A)/(27) = a(mka, A)/A is the wave
amplitude diffracted into the direction 6, given by

m 27
cos(0,,) = —cos(6;) . T
In what follows, we regard a(mka,A) is the sample
value of a(s,A) at s = mkp, whereas a(s,A) for any
s will be estimated by interpolation from the sample
sequence {a(mky,A), m = 0,£1,42,---}. Note that
(9) becomes an integral when kp = 27/A — 0.
Since the periodic surface and free space are loss-
less, the energy conservation law holds:

kn,  ka = (10)

1
2rB(p

}jfm B(p + mka)]|a(mka, A)|*ka

+ 2Re[a(O7A)] =0, (11)

where Re stands for the real part.

3. Estimation of the Scattering Amplitude
from the Diffraction Amplitude

When A — oo, the periodic surface f,(z) becomes the
finite sinusoidal surface f(z), and the diffracted wave
Ya(x, z, A) becomes the scattered wave from the finite
sinusoidal surface f(z). As kp = 2w/A — 0, the Flo-
quet form (9) is reduced to an integral representation
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of the scattered wave [7]

Ys(z,z) = Alim Ya(x, z,\)

—ipx ] ) )
_ e / a(s,OO)efzng»zﬁ(prs)zdS7
27 oo
(12)

where a(s,00) = limp_ a(s, A) is the scattering am-
plitude.

On the other hand, the diffraction amplitude
a(mky ,A) /A is physically expected to be propor-
tional to 1/A, because the number of finite corruga-
tions per unit length is 1/A. Therefore, a(s,A) is al-
most independent of A when A is large enough and wave
interactions between finite corrugations become negli-
gibly small. This means that the scattering amplitude
a(s,00) may be well approximated by a(s,A) when A
is large.

To estimate a(s, A) from the diffraction amplitude,
we proposed an interpolation formula [7], which works
well only for TE wave case. For the TM case, however,
we introduce another interpolation formula:

B(p+ s)a(s,A)

Z B(p + mkp)a(mka, A)

m=—0o0

2
=g

sin [=gan]

By use of (13), we obtain ¥s(z, 2z, A) an approximate
expression for the scattered wave,

'(/)S(l‘, 2, A) =

—ipz 00 .
627T [m a(s,A)e"s”Hﬁ(’”’S)zds.
(14)

The interpolation formula (13) may be derived as
follows. Expressions (9) and (14) are valid in a region
with z > op=max{f(z)}. Assuming that ¥,(z, z, A),
Ys(x, z,A), and their derivatives may be calculated
from (9) and (14) even at z = 0, however, we put

1¢) z,z,A
_ [ e=h| el <2
z=0 O, ‘I| > A/2

Ms(x, z, A)
0z

(15)

of which Fourier transform yields (13).
From (14) we obtain the energy conservation law:

kW /W
—_— o(0410;)d0s + 2Rela(0,A)] =0, 16
53 [, o010 a(0,.4)] (16)
2 o2
o(0s)6;) = ksllgn—m/(es)M(—kcosHi — k- cosfs, A%,
(17)

where o(6|6;) is the scattering cross section and 6; is
a scattering angle (See Fig. 1).

We have expected that a(s, A) is almost indepen-
dent of A. To evaluate this numerically, we introduce
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Scattering cross section o(6s|0;) estimated from the diffraction amplitude

{a(mkp,A)} by interpolation. 8, = 60°, W = 20L, L = 2.5\, o5, = 0.1X. (A) A = 250,

(B) A = 1000A.

the distance p(A, A’) between a(s, A) and a(s, A’) as

o la(s, A) — a(s,A)]
AAN) = , 18
P = G DT TlaG, AT G

lla(s, A)||* = %/_00 |B(p + s)a(s, A)|*ds, (19)

where the weighted norm ||a(s, A)|| is easily evaluated
in terms of {a(mkx,A)} by (13).

4. Numerical Results and Conclusions

For numerical calculations we put
L =25\ W =20L, opb=0.1\ (20)

Four different values of the period A are consid-
ered: A = 125X, 250\, 500\ and 1000\. By the
method of Green’s theorem in Ref.[8], we determine
{a(mkp,A)/A} with an energy error less than 0.5%,
where {a(mkp, A)/A} is approximated by a (4A/A+1)-
dimensional vector. From {a(mky,A)}, we estimate
the amplitude a(s, A) by the interpolation formula (13)
to obtain the scattering cross section o(6,]6;) illus-
trated in Fig.2. In case of Fig.2 with 6, = 60°,
there are major peaks at scattering angles 45.6°, 72.5°,
95.7°, 120.00° and 154.2°, which are effects of diffrac-
tion by the periodic corrugation (1) with the period
L = 2.5)\. We see that Fig.2(A) for A = 250\ agrees
well with Fig.2(B) for A = 1000\. We also calcu-
lated the norm [|a(s, A)|| and the distance p(A, A’) nu-
merically for 6; = 60°. The norm ||a(s,A)|| slightly
decreases when A increases: [|a(s,A)|| is 29.5018 for
A =125), 29.4912 for A = 250), 29.4904 for A = 500\
and 29.4900 for A = 1000X. We found that the dis-
tances are also small: p(125X, 1000\) = 1.045 x 1073,
p(250X,1000)) = 3.411 x 1074, and p(500), 1000)\) =
1.983 x 10~*. For other angles of incidence, numeri-
cal calculations were carried out also. Then we found
that, in case of (20), a(s,A) and o(6s]6;) can be well
estimated by the interpolation (13) if the period A is
larger than 250).

We have applied the periodic approach introduced
in Ref. [7] to the TM wave scattering from a finite pe-
riodic surface. We propose an interpolation formula to
estimate the scattering amplitude for the finite periodic
surface from the diffraction amplitude. From numeri-
cal examples, it is concluded that the scattering cross
section for the finite periodic surface can be well esti-
mated from the diffraction amplitude for a sufficiently
large A.

The periodic approach may be applied to the elec-
tromagnetic wave scattering from a dielectric periodic
surface with finite extent, if the interpolation formula
is modified appropriately. However, a rigorous mathe-
matical treatment and conditions under which the pe-
riodic approach works are still open question. These
problems are left for future study.
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