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1. INTRODUCTION.

In the study of geometry of a homogeneous space G/K, where G is a compact connected Lie
group and K is its closed subgroup, we sometimes need to consider how an irreducible G-module
decomposes into irreducible K-modules when the action of G is restricted to that of K. The rule
which governs the decomposition is called the branching rule for G/K. Moreover, as is seen in the
example of [1], we usually need that the rule should be given as to clarify all the irreducible G-
modules that include a specified irreducible K-module in the decomposition.

In [2], the author gave the branching rules for SO (z + 2)/SO(2) X SO (n) (n = 3) using a lemma
on a type of determinant calculation. We shall study the branching rules for
SO (n+ 3)/SOB) X SO (n) (n = 3), using the lemma again. We always consider SO (k) as the matrix
group consisting of real orthogonal k X k matrices with unit determinant.

2. WEYL’S CHARACTER FORMULA.

We shall review some basic facts on the representation of a Lie group.

When we have a group-homomorphism p from a Lie group G to the linear automorphism group
of a finite-dimensional complex vector space V, we call the pair (V,p) a G-module. We sometimes
omit to mention the homomorphism p, and say as a G-module V or V;. A G-module is irreducible if
and only if no non-trivial G-submodule under the same homomorphism p exists.

Let T be a maximal toral subgroup of a compact connected Lie group G. An irreducible G-
module Vg decomposes into one-dimensional T-modules when the action of G through the
homomorphism p is restricted to that of 7. The action of T" on each one-dimensional T-module is
specified by an element A, which is called the weight of the T-module, in a real vector subspace t* of
the complexification of the dual vector space £~ to the Lie algebra t of T. The character XcofaG-
module V is the formal sum of exp (A) for all the one-dimensional T-modules in the decomposition.
We may write it as yY¢= 2,1 mj exp (A), putting the similar terms together. We fix a lexicographical
ordering in the real vector space t”“. It is known that, in the weights of an irreducible G-module Vg,
there exists a unique maximal weight A in this ordering, that is, the highest weight of V¢, which
characterizes the irreducible G-module up to the G-isomorphisms. We denote the character of the G-
module with the highest weight A by ¥ ¢(A).

The Weyl group We= N(T)/C(T), where N(T) is the normalizer of T in G and C(7) the
centralizer of T in G, acts on t, on t, on its complexification, and on the weights of a G-module.
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The complexification of the Lie algebra g of G is a G-module under the Adjoint action. We call its
weights the roots of G, and denote the set of all the roots by 4g. The set of all the positive roots,
that is, the roots that are greater than 0 in the lexicographical ordering, are denoted by AE. A
positive root which cannot be a sum of two positive roots is called a simple root. It is known that W
is generated by the mirror transformations with respect to the simple roots. If an element w is
written as a product of an even number of mirror transformations with respect to simple roots, we
give w the signature + 1, otherwise the signature —1. We define the alternating character & (A) for
an element A in t” by

Ec) = D) sgn(w)exp(w-A),
we Wg
where sgn (w) is the signature of w.
We set 6= %Za 2 Weyl’s character formula gives us the means to calculate the character
X ¢ (A) from alternating characters:

XeMEgSg)=Ec(A+8¢).

Moreover, we know that £;(8¢) has the following expression.

£c(Bc)= [] (exp(a/2) - exp(— a/2)).
a € 4
In the following, we always take the maximal toral subgroup T of G so that T should include the
maximal toral subgroup 7" of K. Then, the character y g of the K-module that is obtained from a G-
module V by the restriction of the action to K is nothing but the restriction xGL, of the character
X ¢ to the Lie algebra t' of T'. When the irreducible G-module V;(Ag) with the highest weight Ag
decomposes into the irreducible K-modules Vg (Ag) with the highest weights Ay, we have the
relation ¥ ¢(Ag )It,= ZAK mult(Ag) ¥ x (Ag ). Notice that mult (A« ) is the multiplicity of Vg (Ag) in
the decomposition of Vg (Ag), that is, how many times a direct summand isomorphic to Vg (Ag)
appears in the decomposion.
Using Weyl's character formula for y¢(A¢) and ) x (Ag ), we have

Ec(Ag+86)
Ec(8¢6)

Since the decOtnpOsitjon into the irreducible K-modules is unique, we can read out the branching
rule once we can transform the right hand side to the sum of the form in the left hand side. We shall
_ carry out this process for SO (n + 3) /SO (3) X SO (n) in the next two sections.

Ex(8x).

¢

'ZmUIt(AK)fK(AK'F Ok)=
Ag .

3. BRANCHING RULES FOR SO (2m + 3) /SO (3) X SO (2m).

We first treat the case n = 2m (m = 2). The subgroup K = SO (3) X SO (2m) of G = SO@2m + 3)
consists of the elements (@;)i<ij<amss Of G such that (a;)<:;<3€SO@3),
(@i)a<ij<om+e3€ SO(2m), and other a; = 0. We take the maximal toral subgroup T of G as follows:
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an= 1,

Aok+2 2k+2 A2k +2 2k+3

Aok +3 2k+2 A2k +3 2%+3

T=1(ay) [ ]eSO(Z) O<k<m),\.

othera; = 0.

It is a direct product of m + 1 SO(2)’s and is also the maximal toral subgroup of K.
Let H = (a;) be an element of the Lie algebra t of T such that

a a 0 —-X
2k+2 2k+2  d2k+2 2%+3 =[ k O0<k<m)
Aok+3 2k+2 A2k+3 2k+3 Xy 0 ;
othera; =0.
We define the elements Ay, A, ... , A, of t“ by A, (H)=y/-1X, (0<k<m). We fix a

lexicographical ordering such that Ag> A;> --- > A,,. The positive roots Az of G and the positive
roots Ay of K are given by

(Ae (0<k=<m),
AE=</’Lk+/lg (OSIC<€SWI), >y
le—ﬂg (05k<l?$m)
FA/O, ;
A}-(=<A,k+a,g (13k<?§m),»
A=A, 1<k<0<m),

The hightest weight A of an irreducible G-module is of the form Ag=ho Ao+ b A+ -+ h, Ay,
where hy, hy, ... , h,, are integers satisfying hy=h;=> --- > h,,> 0. The highest weight Ag of an
irreducible K-module is of the form Ag=poAo+pi A1+ - + P - 1A _ 1+ €D A,,, where po, Py, ...
Dm — 1, Pm are integers satisfying po=0and p;= - 2p,, - 12 p,=0,and €is+1or — 1.

An irreducible G-module V¢ (Ag) is always the complexification of a real vector space with G-
action. On the other hand, an irreducible K-module Vg (Ag) is the complexification of an real
vector space with K-action, when p,,= 0. (In this case, € is irrelevant.) The complexification of an
real vector space with irreducible K-action is Vg(Ag) with p,=0 or a direct sum
VkAg)+ Vig(Ag) with p,,>0, where Ag is the Ag the sign € of which is reversed. In the
decomposition of Vi(Ag), there appear only Vg(Ag)'s with p,=0 or direct sums
Ve Ag)+ VK (Ax) with p,,> 0, since they must be the complexifications of real vector spaces with
irreduciblé K -action. In this respect, we may restrict our attension to Ax with € =1 (or p,,= 0), for,
if Vx(Ax) appears in the decomposition of Vg(Ag), Vi (Ax) also appears with the same
multiplicity.

In the following, we set s(A) = exp(A) — exp(— A) and ¢(A) = exp(A) + exp(— A).

b

Theorem 1. The irreducible K-module Vg (Ag) with the highest weight Ag=poAo+pi A
+ - + pu A, appears in the decomposition of the irreducible G-module Vg(Ag) with the
highest weight Ag=hoAo+ h A+ -+ h, A, if and only if the following conditions are
satisfied.

L DS thpmry Do 1<hpm_ hivo<pi<hi_, A1<i<m-—2).
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2. In the following expression, in which we calculate the left hand side and arrange them
as in the right hand side, m,, does not vanish:

Ts(e:a)
Z ,l:Io 0 _Zmps((p+%)lo),

k) (S(/'lo))m - 20
where the sum in the left hand side is taken over all the sequences of integers ky, ..., k,,
satisfying
ki=--=2k,=0,
Dn<knp<min{p, - 1,hn-1},
max{p;, h; 1} <k;<min{p;_ ,h; 1} @Q=<i<m-1),
max {p;,h2} < k< hy,

and by, 0, ..., 0, are given by
00 =h0—max{h1,k1}+ 1,
0; =min{h;, k;} —max{h;,1,kis 1 }+1 (1<i<m-1),
On=min (. K} + 3.

My, 1S the multiplicity of Vi (Ag) in the decomposition.

Proof. Adding up the positive roots, we know

Se=tily o)y vl
51(:%2,0"‘ (m - 1)&1+ (AN +}1m— 1.
We set Ag+ S6¢g=hoAo+ A+ - +hyA,. Then hy, hy, ..., h, are half integers, that is, real

numbers of the form integers + 1/2, satisfying ko> hy>---> h,,>0. We also set Ag+ 8 x=5o A,
+D1 A1+ -+ + P Ay Then Py is a half integer satisfying po>0 and p,, ..., p,, are integers satisfying
p>>p,=0.

The alternating character Ec(Ag+ O¢) is the determinant of (m + 1) X (m + 1) matrix whose
(i + 1,j+ 1)-element is given by s(#; A,):

Ec(Ac+8¢)=detsriA;o<ij<m
Similarly we have

fK(AK'I' 6K) =S@OAO)X(%)(det(C(ﬁ,‘A]'))I < + det(s(j_);/lj)) <
If p=pn=0, det(s(p; A,)) vanishes. If p,,>0, we have
Ex(Ag+6g)+Ex(Ag+6k) =sBo) Xdet(cBid; N1 <ij<m

It can be easily seen that
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tron=, I (ool8)-on(-)

AV

JI )

What we should do is to expand the expression for £ (Ag+ 8¢) devided by £¢(8¢)/Ex (S k), that is,
det(s(hids)) ..,

A 2]

in the linear combination of s(py)det(c(B;A; )1 <ij< m-
We shall use the following lemma in [2].

Lemma 2. For half integers ho, hy, ..., hy, satisfying ho>hy> > h,, >0, we have
det(s(izi/l-))o ﬁ 0 Ao)
Lj<m i=0
: i 3 B oelia).
El[s(;lo-lz—l ) (102 )] ( ) hisijsm

where the sum of the right hand side is taken over all the sequences of half integers ki, ..., ky,
satisfying

k>>k,>0,
kw<hyw_v, hio1<ki<hi_, 1<i<m-1),
and positive numbers by, 0, ..., U, are given by
by =ho— maX{illJ-ﬁ},

0; = min{k;, k;} — max{h; , 1,ki+,} (1<i<m-1),

0,,=min{l, Ky}

To get the theorem, it is enough to compute

det( (7c /1,-))1

We have

S(I_Ci;{rj)
s(/'L,/Z)

=1+c(A)+c@))+ -+ c((l_ci—%)l,-).

Notice that ¢(0A ;) = 2. Deviding each column of det (s(IE;)L j)) by s(A;) and expanding it by the
rows, we get

det(s I_Cz}l‘l
TIEENNS Jardewt(c(iﬂw))1 ’

),
lﬂ[ (%) @1y Dm) <ij<m
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where the sum in the right hand side is taken over all the sequences of integers py, ..., p,, satisfying
ph>>p,=0,
Dn<kn, ki <hi<ki 1<i<m-1),

and H=1/2 if p,=0, H=1 otherwise. We set k;=k;— @m —2i + 1)/2 and p;=p;— (m — i)
(1 £i<m). Then, the integers ky, ..., k, and p, ..., P, satisfy

B> 2 kp>0, Py >p,>0,
Pn<km, kis 1 Spi<k; 1<i<m-—1),

kmShm_l, h,'...lSk,'Sh;_l (ISISm—l)

Combining these inequalities, we get the condition for det(c(p;A;)) multiplied by a linear
combination of s(pA,) to be included in the expansion of £ (Ag+ &) devided by £¢(8¢)/Ex (S k).
It is easy to see that the linear combination of s(pA,) is what is given in the theorem. O

Example 3. By the theory of spherical functions, we know that an irreducible G-module Vg (A¢)
with the highest weight A includes the trivial K-module C in the decomposition if and only if A,
is a linear combination of the so-called fundamental weights of the pair (G, K) with non-negative
integer coefficients. Moreover the multiplicity is always one. We check this by our branching rule.

As the highest weight Ag of the trivial K-module C is 0, we set po=p,=---=p,=0. If C is
included in the decomposition of V;(Ag), we have hz= --- = h,,= 0. The condition on the sequence
of integers ki, ..., k,, is given by h<k,<h, and k;=---=k,=0, and we set ly=hy—
max{h; .k} +1, 6;=min{h,k;} —hy+ 1, lp=---=0,_,=1, 0,=1/2. We shall compute the
expansion of

3(10/2) 1o
2

(s(Ao)) H=

and see what is the coefficie(p_t lof s(Aq/2).
Using s(0A)/s(A)=) _ exp((¢—1-2i)A),

we have

3(00/10)3(01/10)
s(Ao) s(Ao)
O—10,—1
= Z Zexp((ﬂo— 1- Zi)/lo)exp((&— 1- 2j)/10)
l{fﬁi(()@o];l?"z
= Z (i+1)exp((00+121—2—2i)/10)
rln:xo{eo.e,}—l
+ > min{€,0}exp((o+ 06— 2 —2i)Ao)
i=min{l,0} -1
Oo+ 6,— 2
+ D1 (fo+0—i—1)exp((lo+ 01— 2~ 2i) Ao)

i = max {lo, 0, }

min{0o,0,}-1 + chqc(Zq;to) 0o+ 0, : even,

g=1

min{E(),el}'C(lg)'l' Zng+ 10((2(]"‘ 1)10) €0+ 01 . Odd,

g1
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where ¢y, or ¢y 4, are non-negative integers. Since we have s(A/2)c(fA)=s((¢ + 1/2)A)
—s((0 — 1/2) A), the coefficient of s((1/2)A,) in question is given by

ho frl . 1, if both h;—hy and hy— h; are even,
D (=D min{0y,0,} = .
K= hy 0, otherwise.

Therefore, an irreducible G-module V;(Ag) contains a trivial K-module C in the irreducible
decomposition as a K-module, if and only if A is a linear combination of 24, 2(A,+ A,), and
Ao+ A+ A, with non-negative integral coefficients, and, then, the multiplicity is always 1. O

4. BRANCHING RULES FOR SO (2m + 4) /SO (3) X SO (2m + 1).

We next treat the case n=2m+1 (m=1). The subgroup K=SOB)XSO@2m + 1) of
G = SO(2m + 4) consists of the elements (a;); < j<om+a 0f G such that (@;);<;;<3€ SO(3),
(@j)s<ij<omea€SO@m + 1), and other a;=0. We take the maximal toral subgroup T of G as

follows:

a Aok +1 2%
2k+1 2k+1  A2k+1 2k+2 €S50©@) O<k<m+1)
T=3(a;)|\F2k+2 2k+1 Aok+2 2%+2 .

other a;=0.

It is a direct product of m + 2 SO (2)’s. The maximal toral subgroup T’ of K that is included in Tis

given by
ass asq| |1 0
as; as) |0 1)[°

Let H = (a;) be an element of the Lie algebra t of T such that

T'= [(dij) eT

Aok +3 2k+3 QA2k+3 2k+4 0 -Xi
= (- 1<k<m),
Aok+s ok+a Ookrs 2k+a) (Xk O

other a; = 0.

We define the elements A_,, A¢, A1, ..., A of t" by A,(H)=y/-1X;, (—1<k<m). We fix a
lexicographical ordering such that A_;> Ag> A;> -+ > A,,. The positive roots 4; of G and the
positive roots A}} of K are given by

A+ )lk+;lg (—15k<€§m),
“MAa-Ae (—1<k<e<m).|
Aoy, Ay A<k<m),
Ag=4 0+ A, (1<5k<0<m),}.
/lk—A‘g (lSk<€SM)
Notice that the Lie algebra t’ of T is the subspace of t defined by A,= 0.
The hightest weight Ag of an irreducible G-module is of the form Ag=h_;A_+hoAo+ I A,

+eot+ by 1Ay 1+ €M, A, where h_y, hy, hy, ..., h, _ 1, h, are integers satisfying h_,> hy=h,>
«+>h,,_1=h,=0and € is +1 or — 1. The highest weight Ay of an irreducible K-module is of the
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form Ag=p A1+ p1 A+ +puld,, where p_y, py, ..., p, are integers satisfying p_,> 0 and
Ph=-=2p,=0.

Theorem 4. The irreducible K-module Vi (Ag) with the highest weight Ax=p_;A_+p A,

+-- 4+ pn A, appears in the decomposition of the irreducible G-module Ve(Ag) with the

highest weight Ag=h_1A_1+hoAo+ A1+ - + Ny 1Ay _ 1+ €My A, if and only if the following

conditions are satisfied.

L pp=<hy_o hi s 1=p;i<hi_o 1<i<m-1).

2. In the following expression, in which we calculate the left hand side and arrange them as
in the right hand side, m,_ does not vanish:

Hs(r,
A Z’"”s((“) )

(o, @1, - 20

where the sum in the left hand side s taken over all the sequences of integers qq, qy, ..., Gm
satisfying

o= 1= -2 q»=0,

hn< @um<min{p, - 1,hn -1},

max{p;, 1, hi} < g;=min{p; - ,h; 1} Q<i<m-1),

max{ps,h} < q: < hy, max{p,,ho} <qo<h_,,

and ry, 1y, ..., 'n are given by

Yo =qo— max{q,,p:} +1,
r; =min{q;,p;} —max{g;i+ 1,.pi+1}+1 A<i<m-1),
rm=min{qm,1>m}+%

my_, is the multiplicity of Vi (Ak) in the decomposition:
Proof. Adding up the positive roots, we know

Sg=m+DA_+mAoy+(m— DA+ -+, _1,

6K=%A_1+%AI+ +%Am

We set Ag+ 8c=h_1A_+ hoAo+ A1+ -+ +hyp_ 1Ay + €, A, Then hg, hy, ..., h, are integers
satisfying h_;>ho>h>->hy 1> h,=0. We also set Ag+S8x=Dp_1 A1+ P A1+ - + DA
Then p_i, P, ..., b are half integers satisfying p_, >0 and p, >---> p,,> 0.

The alternating characters £¢(Ag+ 8¢) and Ex (Ag+ S ¢ ) are given by

Ec(A+8¢) = (det( (iz,-aj))_lsusf €det(3(iliai))_lsi,j5m)’

5K(AK+ 61{) =s(1'>_1/1_1)xdet(s(ﬁ;/1j))

1<ijsm
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By setting A,= 0, we get the restriction of £¢(Ag+ 8¢) to t":

C(il—la'—l) 1 C(il—l;ll) C(il—lﬂvm)
C(ilol—l) 1 C(ilolh) C(ilo/lm)
56(A0+5G)|t,:det C(ihl—l) 1 C(ihll) c(ill)'m)

c(ilma‘—l) 1 c(ilmﬂ'l) 0 c(ilmalm)
= (= D"det(c(hi -1 A;) = c(hiA)))

0<i<m
j=—lorl<j<m

In the same way, we have

£6(86)|, m AN (A A+ A\ [A—A;
Fow R B )

Applying the formula

c(h; _ /'L)—-C(il,‘/l)_i"“‘““z )
sam) - 2 saw,

q= il,‘+ 1/2

on each column of the matrix in £¢(Ag+ &6 )|£,, and expanding it by the rows, we obtain

det(s(q; A;))

fG(AG+6G) f ?ijo’rnlstm
| Sk(0k)= :
§c0c) |, (éo.él.Z,izm) (At Ay (A=A
) 2 2
j=1
where the sum in the right hand side is taken over all the sequences of half integers qo, 41, ..., @m

satisfying k-, >qo>he>q, >0 > Shy - 1>¢,>h,=0. We set g¢;=q;— Qm—j+1)/2
(0 £j < m). In view of Lemma 2, we can easily deduce Theorem 4 from this formula. O

Example 5. We again consider which irreducible G-module V;(Ag) with the highest weight Ag
includes the trivial K-module C in the decomposition. As in Example 3, we set p_,=0 and
p1=-=p,,=0, and, then, we have hy=--- = h,,= 0. The condition on the sequences of integers ¢,
qi, ..., gn are given by h_,=>qo= hy=q,= h; and go=--- =q,= 0. We have ro=¢qy—q;:+ 1, n=--
=7, -1=1, and 7,,= 1/2. We shall compute the expansion of

()& 5 s(@o— it DAY)
S(TI>Z 2 sa

@1=higo=ho

and see what is the coefficient of s(A_,/2). Since we have

s((@o— g+ DA_))
3(2-—1)
(qo—a1)/2
1+ Z c(2qA_,) qo— q, : even,
g=1
G- g~ D /2
cA-)+ D) c(@g+1DA) go—q,:0dd,

g=1
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the coefficient is equal to the number of the pairs (qq,q;) satisfying h_,> qo= hy= q,= h; such that
go— q, is even minus the number of the pairs (q¢,q,) satisfying h_,= qy= hy= q;= h;, such that
qo— ¢, is odd. The number is 1 if both 4_,— ko and hy— h; are even, and 0 otherwise.

Therefore, when m > 1, an irreducible G-module V¢ (Ag) contains a trivial K-module C in the
irreducible decomposition as a K-module, if and only if A is a linear combination of 24 _;,
2(A_1+ Ap), and A_,+ Ao+ A, with non-negative integral coefficients, and, then, the multiplicity is
always 1. When m = 1, an irreducible G-module V¢ (A¢) contains a trivial K-module C in the
irreducible decomposition as a K-module, if and only if Ag is a linear combination of 2A_1,
A_i1+ Ao+ A, and A_;+ A,— A, with non-negative integral coefficients, and, then, the multiplicity

isalways 1. O
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