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1. INTRODUCTION

The analytic torsions of the Hermitian line bundles [1] over the complex projective spaces are
calculated in Ling Weng'’s paper [2] using the arithmetic Riemann-Roch formula. In the paper, Ling
Weng did not use the information on the eigenvalues of the 9-Laplacians and asked how the
eigenvalues may relate to the calculation. We shall show here the representation theoretical
calculation of the eignevalues and the direct computation of the analytic torsion. We hope this paper
contributes to the better understanding of the nature of the analytic torsion.

2. THE 9-LAPLAGIAN

We first give the general representation theoretical formula for the 9-Laplacian on a compact
Hermitian symmetric space.

Let G be a compact connected Lie group with Lie algebra g, K a connected closed subgroup of G
with Lie albegra &. We fix a positive definite invariant bilinear form B: g x g — R and denote by m the
orthogonal complement of £ in g with respect to B. We assume that (G,K) is a symmetric pair. We
have the relations

g=t®m, [EE]cE [Em]lcm, [m,m]Ct

We further assume that K has a central element j whose adjoint action J=Ad(j) gives a complex
structure on m. The quotient space M = G/K is a Hermitian symmetric space of the compact type
with the Riemannian metric defined by B restricted to m.

The Lie group G is a principal K-bundle over M, and is endowed with a G-invariant connection
whose horizontal space is spanned by the elements of m, considered as the left invariant vector
fields. A C-vector space V is called a K-module when it has a K-action y: K — Autc (V). We always fix
a K-invariant Hermitian inner product on V. For a K-module (), V'), we have an associated Hermitian
vector bundle E=GxxV. The space of smooth sections C”(E) is identified with a subspace
C*®(G,K;V) of the space of smooth V-valued functions C”(G; V') defined by

C=(G.K:V) = { seC™(G:V) | sk =x Gk Ds@) geCk eK}.

For example, the complexification of the space X (M) of smooth vector fields on M is identified with
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C>(G,K:m®), where the complexification m€ of m is a K-module with respect to the adjoint action.
In the sequel, we usually treat the complex-valued objects, and sometimes omit the symbol of the
complexification.

Since E has an induced connection, we can define a covariant derivative Vx s for X € X(M) and
s € C*(E), which is a section of C*(E). When we consider X as an m-valued function and both s and
V x s as V-valued functions on G, we have an identity (V x s)(g) = (X(g)s)(g) (g € G), where X(g) € m
is considered as a left invariant vector field on G. The covariant differentiation D: C*(E) —
C®(E® T" M) corresponds to the map D: C*(G,K;V) - C*(G,K: V®m") defined by

Ds)(g)(X) = (Xs)(g), seC(G,KV), geiG, Xem.

We denote by m_ [resp. m,] the anti-holomorphic [resp. holomorphic] part of the complexification
of m. The holomorphic structure of E is given by the (0, 1)-component 9 of the complex linear
extension of D, i.e., (3s)(g)(X)=Xs)(g), s€C”(G,K;V), geiG, Xem.). For ke K, we have
(0s)(gk)(X) = x (k~)(3s)(g)(Ad (k) X), as is expected.

This 3-operator extends to the tensor bundle with the exterior product of the anti-holomorphic
cotangent bundle:

0:C*(EQT* M)~ C(EQT**'M)
is defined by

q+1 . —_
@ X1, Xge )= D T XX, X X 1)
i=1
for X1,...,X,+1€m_, where ~ ~ means the deletion of the member. We notice that [ X, Y] vanishes
for X,Yem_, since[X, Y] € ¢° satisfies

(X, Y1=Ad() X Y1=0JX,JY]=[-/-1X,- /-1Y]=—[X, Y]

We have 3°=0and 3 gives a complex over a holomorphic vector bundle E, as is seen by

Q@) (X1,....Xg+2)

qg+2

=V D T IXAGN X, e Kr e X ga2))
i=1

=SV DT XXX X X e X g 42))

j<i
=D XXX X K X )
i<j
=3 DX XU (X e, K X oo X g2)
j<i

=0.

We fix an orthonormal basis {E,} of m_. The complex conjugate {E,} forms an orthonormal
basis of m,, and satisfies B(E,,E}) = 8 »- The K-invariant Hermitian inner product on V® A?m_ and
the Haar measure on G induces a K-invariant Hermitian inner product on C*(E® T*? M). The
formal adjoint of the 3-operator to this inner product is given by
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@ (X1, ... Xg) == D Ea(s(Ea. Xy, ... X))

We now define the 3-Laplacian Don C*(E® T**M)byOs= (39 + 3 9)s.
(Os) (X1, ....X,)
= (33" +2 ) X1,...X,)
q —
=DEDTTIXA(@ (X X X))
i=1
- D E(@s) Ea, X1, ... X))
‘ q . . —
Z_ZZ(_1)1-1Xi(Ea(s(Eas-X1v"'aXf5°-"-Xq)))
a i=1
~ D E(Eo(s(Xy,.... X))
’ g P —
DD T E(Xi(s(Ea Xy X X))
a i=1

=_Z%Za (EyEa+ EJE,+[E, EoD(s(X1, ... X))

l . _— —
DI D T IXLE S (Bg X, XKoo X)),
a i=1

We rewrite this formula by using the fact that [E,,E,] and [ X;,E,] are elements of £€. Since a
sections € C*(E® T*"* ' M) = C*(G, K: VA m) satisfies

s(gk)( X1, ... X)=x (k" Hs(g)Ad(k)X,,....Ad (k)X ,))
forgeG keK,and X;em_(i=1,...,q),we haveforYe tor £€
(YS)(Xl, ...,Xq)=—Z(Y)S(X1,...,Xq)

q . —
+ DTS X L X X LX),

i=1
Moreover, by the Jacobi identity and the fact [m_, m_]= {0}, we can easily show the following.
([E,,E.1Xi1=—[E, [ E,X;]], } [X:E)X;1=1X;,E1X:].
Therefore we have

(@Os)(X1,....X,)
=—% (E,E,+E,E,))(s(X,,....X,))

+%Zl([EmEﬂ])s(xl““’X")

9 : —_— —
_% Z(_1)1_ls([[Ea’Ea]aXi],Xl’-“aXia--~9Xé)

a i=1
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; i F —
+ZZ(— D' (XL EDs(Ee X0,y Xiy o Xy)

q N _ —~~
I IED T SWUXLELEL X X LX)

a i=1

+ZZ(_ 1)i+js([[XhFa]an]’Ea’Xla --'s/X7s “.’TX"?, ---;Xq)
a j<i

- D UKL ELX L E Xy Kis o X X ).
a i<j

== L SV (E,E.+E.E,)(s(Xy....X,))
—%Zi}(— D' S(EE, XL Xy, XS X)
a i=1
+ A VY(E, EDsx,, . X,)
—Zi‘l(—1)f“1x([X,~,Ea])s(E,,,X1,...,7{7,...,)(,,).
a i=1
We take an orthonormal basis {Y; } of €. The Casimir operator C, of g is given by
Co= D (E,Eo+E,E,)+ D\ Y,Y,,
a b
and the Casimir operator C, of £ is given by
Cﬁ;YbY,,.

We set

X(C) =D x (Y2 (¥y).
b

The action of C; on s is computed as follows:
DI Fy(s(Xy,.... X))
b
= ;mx(ﬂ,)s(xl, X))
+2
b

== DX F)Fy(sXy, ... X))
b

q . —~
DD TR FR XXy X, X))

i=1

z / T
+;Z(_ D' Ry (Fy X1, X, X LX)

i=1
= D XEFENLF)s Xy, ... X,)
b

_22

g . —
DDy Fy)s(Fo, XL X, o X X )

i=1
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q . —
F D S W L XL Xy s X X)
b i=1

= S D S XM Fa XA X K X X
b j<i

+ VS 1 S UF XUF X X X K X ).

b i<j
Tha e last two terms are identical. By representing [Fj,X;]€ m_ with respect to the basis {E,}, we

ha—~~—e

—

SV (UFs Xl Fo X 1K1, Ko X X)
b
=SV SBE, [ Fy X DE[F3 . X;1.X1, 0 X X X )
b a

:ZZS(Ea7[B([XfsFa]st)Fbv-Xj]»Xl)-"v/XTy“-a Xj$-~-;Xq)
a b :

—

= SVS(E Ml X E XX X X X )

—

= SV E M X E ) X)X X X X )

= SV UF XU Fo Xid X X K X )
b

=0.

TX —us they vanish.
For the third term, We have

Z[Fb,[Fb,Xi]] = ZZ[Fb,B(E,,[ Fy, X;DE,]
b b a
= DI B(X;,E,)Fy) Fy Eq]
a b
= 3 X;,E,)E,]

a
= Z [Eﬂv[ FaaXl]]
We also have

S X (F)s(F X X0 X7 X )
b
=S S X (F)s(BE, L Fo XDEo X1, Xy, Xo)
b a
=S BUX: ELF)Fo)s(Ba Xy, ... Xi o X)
a b

=SV (XL EDs(Ba Xy, .. X5 0 X).

a
Substituting these formulas, we get
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0==D Fy(Fy(s(Xy,.... X))
b
+ VX FD R (Fp)s(Xy, ... X,)
b
g . _ —~
DN D T SUE B XL X, X X )
a i=1

g . _ —~
2D T (X E DS (Ea Xy, X X ).

a i=1

Finally, our formula for 8-Laplacian O becomes

Os)(X1,....X,)
= %(Z(F,,E,,+E0F,,)+ZF,,F,,)(S(XI, X))
a b

+ ISV FED g (FsX, ... Xp)
b

+ 3 X QE, EDs (X, .. X,).

We denote by R the element Za [E,,E,] €t in the above formula, which is in the center of £ and, in
fact, satisfies Ad(k)R=R (k€ K).

Theorem 1. The 3-Laplacian O on C*(E® T®? M) for a compact Hermitian symmetric space
M= GI/K is given by

@) X1, Xg) == 3 C (X1 X)) + 5 2 (Co B)S(X, . X).

This formula enables us to compute the eigenvalues of 9-Laplacian O representation
theoretically.

For any associated vector bundle E over the homogeneous space G/K, the group G acts on
CT(E)=C*(GxgV)=C"(G,K;V) as follows:

(g-s)g)=s(g'g), seC(GKYV) gges.

Since C, is an invariant differential operator, this action on C*(E® TO9 M) for a compact Hermitian
symmetric space M= G/K commutes with the d-Laplacian O, and each eigenspace of O is a G-
invariant subspace. As the operator O is elliptic, the eigenspace for each eigenvalue is finite-
dimensional. Therefore we have the decomposition of C*(E® T»? M) as the direct sum of
irreducible (finite-dimensional) G-modules.

When the space of smooth sections C*(G, K; V') decomposes into the direct sum of irreducible
G-modules, the summand is the image of a G-homomorphism from an irreducible G-module (p, U) to
C%(G,K;V). The space of G-homomorphisms Hom¢ (U, C*(G, K;V)) is identified with the space of
K-homomorphisms Homg (U, V') by Frobenius’ reciprocity law: The correspondence between
® € Homg(U,C*(G,K;V))and ¥ € Homg (U, V) is given by

Du)e)=¥ (), PuNg=¥Y(pHu), ucU geC
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By Schur’s Lemma, the space Homg (U, V') can be computed by the branching law, which describes
how an irreducible G-module decomposes into the direct sum of irreducible K-modules when the G-
action is restricted to the K-action.

Since the Casimir operator acts on an irreducible module as multiplication by a contant given by
Freudenthal’s formula, the irreducible G-submodule of C*(E® T®? M) is included in an eigenspace
of 9-Laplacian O, the eigenvalue of which can be computed by the highest weight that determines
the irreducible G-module. The dimension of the irreducible G-module can be computed by Weyl’s
formula. Thus we can compute the eigenvalues and the dimension of each eigenspace for 9-
Laplacian O.

The detail is given in the next section for the case G=U(n+1)and K= U(1) x U(n).

3. LINE BUNDLES OVER COMPLEX PROJECTIVE SPACES.

We shall compute the analytic torsion of a positive power of line bundle associated with
hyperplane section over the complex projective spaces.

Let G be the unitary group U(# + 1) acting on the (# + 1)-dimensional complex vector space C"* !
equipped with the standard Hermitian inner product. The group G acts transitively on the set of one-
dimensional complex vector subspaces, that is, the complex projective space P*(C). We take the
subspace containing ‘(1 0 --- 0)as the origin o, and denote by K the isotropy subgroup at o. Thus
we consider P"(C) as the homogeneous space G/K=Umn + 1)/ U(1) x U(n).

The Lie algebra g of G is the space u(n + 1) of skew-Hermitian matrices of degree #+ 1. The
invariant inner product B is given by B(X,Y) =—trace(XY), (X,Y € u(n + 1)). The diagonal matrix
j=diag(,/-1,...,/-1) gives a complex structure on the orthogonal complement m in g of the Lie
subalgebra £ corresponding to the subgroup K. The anti-holomorphic part m_ is spanned by {E, }Z -
the (i,7)-component (E,); (0=<1i,j<n) of which is given by (E,);=66,. The basis {E,} is
orthonormal. We set E =E,, and we get the orthonormal basis {E,} of m,.

The subgroup T of diagonal matrices in G is a maximal toral subgroup. It is also a maximal toral
subgroup of K. The Lie algebra t is the subalgebra of diagonal matrices with pure imaginary
components. The elements {A4;}}_, in #©)" defined by A;(diag (o, i1, ..., n)) = i forms an
orthonormal basis of (t¢)". We fix a lexicographical ordering in the real span of {A;} such that
Ao>Ay> o> Ay,

An irreducible G-module is designated by its highest weight Ag=hoA¢+h A+ --- +h, A,, where
hy,hy, ..., h, are integers satisfying ko= h;> --- > h,. We denote it by Vs (Ag). An irreducible K-
module is designated by its highest weight Ag=koAo+k A+ --- +k,A,, where ko,k1,....k, are
integers satisfying k,> --- = k,. We denote it by Vg (A ). The following branching law is well-known.

Proposition 2. For an irreducible G-module Vg(Ag) and an irreducible K-module Vg(Ag),
the dimension of Homg(Vg(Ag), Vi (Ag)) is at most one. We have dimHomg (Vg(Ag),
Vk (Ak)) =1 if and only if the inequalities hy=> k> h=> ko> hy> --- > k,> h, and the equality
ko=237_ b= 27 ki are satisfied.

We consider a one-dimensional K-module (},,C) the action of which is defined by
Xm (@10 kNz=e""2 (k=(e"'° k)€ Kz C). For m=1, the associated line bundle
L= G xxC is the tautological line bundle of P*(C); for m =— 1, the associated line bundle L_, is its
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dual bundle, that is, the line bundle associated with the hyperplane divisor. We shall treat the line
bundles L_,, for negative integers —m.

The vector bundle L_,,® T2 P*(C)is associated with the K-module X-m®Nm = X-n®@AN'm,,
which is an irreducible K-module with the highest weight —(m + ¢) Ao+ A,, where we set A,= Y} ! A

Proposition 3. The list of highest weights Ag for irreducible G modules Vg(Ag) with
dimHomg (V(Ag), Vg (= (m+ @) Ao+ Ay)) = 1 is given as follows:

=0: Ag=—mA,, (k+DAg—-(m+k+1A, (k=0).
1: Ag=(k+DAg-(m+k+DA, (k=0),
k+DAg+Ai—(m+k+2)A, (k=0).
2<q<n-1: Ag=k+DAg+A;_1-(m+k+@A, (k=0),
k+ DA+ Ay—(m+k+qg+1)A, (k=0).
g=n: Ag=(k+DAg+A,_\—(m+k+n)A, (k=0).

By Freudenthal's formula, we know that the Casimir operator C acts on an irreducible G-submodule
of C*(L_,,® T“? P"(C)) isomorphic to V¢ (Ag) as an scalar multiplication by B(A¢+28 ¢, A¢ ), where
O ¢ is the half of the sum of all the positive roots of g. In the same way, the action of X-n(Cy) can be
computed, and is equal to —m? It is easy to show that the action of y_,(R)= X_m(za[Fa,E,,]) is
equal to —mmn. Using Theorem 1, we can compute the eigenvalues of 3-Laplacian O on V¢ (Ag). We
notice that these values do not depend on g.

Proposition 4. The action of 9-Laplacian O on the irreducible G-submodule in
C>(L_,® T®? P"(C)) isomorphic to V¢(Ag) is a scalar multiplication. The value is given as
Sollows:

Ag a

-mA, 0

(k+1D)Ag—(k+m+1)A, (k+1)k+m+n+1)
(k+DAg+A;—(k+m+q+ DA, | (k+g+D)(k+m+n+1)

The dimension of an irreducible G-module V¢ (Ag) is computed by Weyl's formula:

dim V¢ (Ag) = H %ﬁ@’

aed.

where 4. denotes the set of positive roots of g.

Proposition 5. An irreducible G-submodule in C*(L_,,® T*? P"(C)) isomorphic to V¢ (Ag) has
the following dimension:

dimV (- m,l,,)=(”’;”),



47

dimVe((k+DAg—(k+m+1)A,)

k+n\lk+m+n+1\2k+m+n+2
n-1 n k+m+n+1-

dimVe((k+ 1) Ao+ Ay— (k+m+g+1)A,)

[k+q\[ k+n \(k+m+n+q+1\2k+m+n+qg+2
- q n—-q-1 n k+m+n+1 -

4. THE ANALYTIC TORSION OF L_,,.

Let E be a holomorphic vector bundle with a Hermitian metric over an n-dimensional Kahler
manifold M. By using the spectrum Spec(0,) of d-Laplacian 0, on C*(E ® TO9 M), that is, all the
eigenvalues of O,, we define a spectral zeta function CEg

CEq ()= Z mult(A)A°,

A € Spec(0y),A>0

where mult(A) is the dimension of the eigenspace associated with the eigenvalue A. It is known that
the spectral zeta function is defined on a half complex plane for Rs large enough, has a meromorphic
continuation to the whole complex plane, and is analytic at s=0. We define the spectral zeta
function { g of the Dolbeault complex for E by

SIOEDNCIVTSHO)
g=0
The analytic torsion A-Tor (E) of E is the value of the differential of { g at s =0:
A-Tor (E)={"g(0).

In view of Propositions 3, 4, and 5, the spectral zeta functions {';_, ,and {;_, for the line bundle
L_,, with negative —m over the complex projective space P"(C) are given as follows:

A [ktn\[k+tm+n+1\ok+m+n+2
CL-m.o<S>-§<n_1)( " )m

x{(k+1)k+m+n+1)}"°,

& (k+qg-1\[k+n\[k+m+n+q\2k+m+n+q+1
cL_,,.,q(S):Z( _1 )(n— )( ) k+m+n+1
k=o' 4 1 n

x{k+q)k+m+n+1)}"°

+2 k+qg\[ k+n \[k+m+n+q+1\2k+m+n+qg+2
“\ g \n-q-1 m k+m+n+1

x{k+q+1)k+m+n+1)}"° (1<qg<n-1),
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v (k+n=1\[k+m+2n\2k + m+2n+1
fL-m'”(s)“Z( " )( 7 )k+m+n+1
k=0
x{k+n)k+m+n+1)}"°,

B ) &y (k+qg-1\[k+n\[k+m+n+q
{L_,,,(S)—GZI( l)qZ( g-1 )("—q)< n )

k=0

2k+m+n+qg+1

{k+g)(k+m+n+1)}"°

k+m+n+1
2 n-1\& [k+n\[k+m+n+gq
S )E () )
qZ:]l( ) q-lkg . .

x(k+m+n+q+D{(k+q)k+m+n+1)y°" L

For positive integers #n, m, and g, we set

Cnmals)= i(k;”><k+m+”+‘q>(2k+m+n+q+1)

k=0 m
x{k+q)k+m+n+1)}°""
We call attention to the fact that the polynomial

(k+n)(k+m+n+q

)(2k+m+n+q+1)
n n

in k is divisible by (k + @) (k+m+n+ 1) for1 < g < n.
We consider in general a Dirichlet sum of the form

Crss®= D PUN(k+8)(k+85)y",
k=0

where 8, and §; are positive integers with §,< 82, and P(k) is a polynomial in k of degree 2x + 1

satisfying
01+, _ 01+,
P( - )——P(x— —5 )
In other words, P(k) is a polynomial of the form

3 51+6,\ ! 1 pearn[ 816
P(k)—dg()cd(k'i'—lz—) s Cd—mp ——12—2‘)

We shall give an expansion of { p 5, 5,(s) in terms of Hurwitz zeta functions £ (s, a):

{(s,a)= i(kﬂz)‘s.
k=0

Theorem 6. For positive integers 81, 82 with 8,:< 82 and a polynomial P as above, we have

n =) _ 2m
T X T TR

d=0 m=0
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In the following, we set

61+52 S = 52261

Si=—5—2

We begin the proof by the following 31mple lemma.

Lemma 7. For any non-negative integer k and any complex number s except for non-positive
integers, we have

{(k+8,)(k+82)}y = Z I;n(flf(’g)ém(k_’_a”—zs—zm.

Proof. We apply a binomial expansion

(1-2)"*= ZO——I;;,SIT é’;) ",

which holds for any complex number s except for non-positive integers and for any real number x with
lxI< 1, to the last part of the following equation.

{k+8)(k+82)y  ={k+8,)°- 8%}

:(k+5+)““~‘(1 —(kf—&)z)-s.

O

Proof of Theorem 6. 1t is enough to consider the case P is a monomial (k+5+)2d”. For
Rs =s¢>d + 1, by the inequality

Py

I (s+m) com 2d+1- 92— 2m
s 8" (k+04)

T(sl+m) qcom +1- 25 2m
(m|r(|s|) 62 Z(k+6+)2d 1-25-2 )

IA

IA

N (T (Is1+m) com 2(d+1 - so— m)
Z(m'l“(lsl)5 Cnd, )

0 5.\2 Isi
2(d+1-s0) o_
00 (1 (5)) :

_ 1 1
(Cm‘ SGo—d-1tm) T 5+)

IA
Q§

we may change the order of the summations, and thus we have

ST e+ 8,07 (e + 81k + 820
k=0

[ (s+m) com %d+1-2—2m
',,,Zo(rn'm)‘S dkr8 )

AT (s+m) com
‘ZLW‘S% {@s+2m—2d—1,8.).
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We need to clarify the meaning of the equality. For any positive integer N, we have

00

DY k+8)% ke +8,)(k+82)}

k=0
CSYLGAmM) somr 05 9 — 24~ 1.5
_Z m!I(s) - 10+)

m=0

Lis+N)gon 7 (),

+ I (s)

where Z y(s) is given by

v _L+N+0) oo R
Zn®= 2y D WA G MO (k+ O TR

WeputS=d+2—N.InacloseddomamDRj:{seC [Is] SR,EKSZS},Wehave
d T (s+tN+0 2 2d+1-25—-2N-20
SN MO~ k+84)

< (Ir'(R+N+0) 5
“(IN+O!'T'(R+N+1)"-

I'(R+N+0)
(N+O)!'T"(R+N)

S ACR+N+D) o
SUTR+N+1°-

I'(R+N+0)
0 (R+N)

(k+6+)—3-20

+

8%k +8.)% ®logk+8.,)
(k+6+)—3—20

- 52 L (k+8,)727 %,
where we used the fact that elogx < x for x> 0. Since the last formula of the above inequality is
summable over k and ¢, Z y(s) is holomorphicon ®s>d+1-N .

In short, the Dirichlet sum ¢ p 5, 5,(s) has the analytic continuation, which is a meromorphic
function on C given by the infinite sum of Hurwitz zeta functions as in Theorem 6. O

We notice that this theorem is essentially obtained in [3], but that our proof is much simpler, and
that our formulation is indispensable for our computation of A-Tor(L_,,).

The analytic continuation of Hurwitz zeta function is well-known. It is meromorphic on C and
has a single simple pole at 1. The Laurent expansion at 1is given by

C(S,a)=;%T—Y’(a)+al(s— D+as(s— 1)2+...,

where ¥ (a) is the digamma function:

I''(a)

‘F(a)=r(a).

To compute the analytic torsion of L_,,, we shall calculate as follows:
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d >y [ (s+m) com B
zg(%m& £ (2s+2m —2d 1,5+))

s=0

=20'(-2d-1,8.)

d
+ YVLs™ ¢ em-2d-1,8.)

=1

i(s(s+1) (s+d)52d+z< y/(5+)>>

3

-+

ds (d+ 1)

s=0

+ DY Le™iem-2d-1.8.).

m=d+2

The third term of the right hand side is equal to

s

where H (d) is the harmonic number:
d
Had=Yi=1+1+. 41
n=1

We set H(0)=0.
To compute the fourth term, we first rewrite it by the integral expression of the Hurwitz zeta

function.

G a)—2<k+a)

which holds for Rs > 1.

3 Lemrem-2d-18.)

m=d+2

_ N 1 20+2d+4
_02_0:————““25_ £(20+3,8,)
-S.u

-3 1 2+2d+4 [T n+2_e
—§(Q+d+2)~(20+2)!5- /{; u —l—e'“du'

We consider a holomorphic function F(s) defined by

RS 1 w+od+a (& s+mez e 0"
F<s)‘§(u+d+2)~(ze+2)15- fo w T e

for Rs>— 2. Notice that

62d+4

520+2d+4 N0 5-14

=d+2°

N 1
;) @+d+2) 20+ 2)!
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For Rs large enough, using the formula

2d + 1
2d + 1)! 1
(0+d+2) GI+ ! 22( D Gd—p+ DT GIT T3

we can rewrite F(s) as follows:

2d+1 20+2d+4 ) -S.u
_ T, (2d+1)! 67 f s+2u+2 e

_MZ*:I(_ 1),,(2d+1)16?“"’“
Tz @d—p+ 1)

oo 1__10+p60 .o . -8.u
« $ QNS [,

1=p+3 0 1-¢™*

_2"“(_ 1y @d+1)16% !
= Z @d-p+1)!

© -(6+-6-) b —(8 +6-)u
([ ettt
0

-e
_iiz(l—(— 1)a+ﬁ)50_’/‘°°us—p-1+c e S du)
=0 o 0 [-e™

2"”( 1),,(2d+1)16?"‘“‘
Z @d—p+ 1)

><<I"(S—P)(C(S—P,51) ~=1D*{(s~1,82))

’21(1 - 1)“”)6

=0

2d + 1 2d-p+1
- e B T =PX{ (5= 5,80~ (- 1L (5 5,8,)

=L (s—p+0)L(s—p+10,8, ))

-
I

2d + 1
_@2d+1)! s -a+
Zl (2d - q+1)' Tre-0lG6-a.8,)

Q

e+ ] 2d—q+1
X (-DP=(=1**9
& )

2d+1
- Z(‘ D Ga G T LG LA

2d + 1 2d-p+1
-3 2L (s ) (5= 2,80~ (- D*C (5~ ,82)

+2@d+ DI (s-2d-1){ (s-2d—1,5,)
d+152‘“2r(s+ DE(s+1,8,).

We know the analytic continuations of the members of the last expression. For example, the Laurent
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expansion at s=0 of I'(s—p){ (s —p,5:) is given by

I'(s-p){(s—p,61)
NI XN <r<s+1>c<s £,81) )‘ .

=D G-D(-2) G-
(- l)pi( 11)7'51)1+( 1)1;{( P5)+(Y’(1;;"H(P))C( P51)

Since F (s) is holomorphic at s = 0, the poles should cancel out, which gives
dxlod+1 -
0= Z( )84 5.8~ - D! 5.6

2d +2

—2l(-2d-1,8,)- 5d+1

The value F(0) is given by the summation of the constant terms in the Laurent expansions:

2d+1
FO= 20 (¥ 6% (e 80+ # 0+ HONE5.60)

=0

D08+ W)+ HD) L (-1,65)))
—2({’(— 2d-1,6)+W(1)+H(2d+ 1)){(— 2d-1,6))

2d +2
S a4 ACI)

2d +1
= 2(2";1)6?"“’“(@'(—19,61)+H<p>{<—p,61>)
=0
~(=DP('(=0,8)+HP){ (-,82))
-2(L(-2d-1,8,)+H@d+1){ (-2d-1,6))

52d+2
tdT

T ¥ (6.

By substituting these formulas, we get the following:

Theorem 8. For positive integers 81, 8z with 6:< 83 and a polynomial P as in Theorem 6, we

have
2d+ 2

8
{(-2d-p)-1,6)+ 5575 H@)

M-
%

4,351,52(0) = Z cd(
d=0

1

19 1 —p+
Z( d+ )53" PHLL(= 1,81 — (= D)PL(=5,82))

P

+

b0 P

2d +1

¥ <2d;1>5?"“’“H(p><C(-1>,51>—<—1)”5(‘1”52”
p=1

—2H©2d+1){ (-2d - 15+)>
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Therefore {'p s, 5,(0) can be expressed by a finite sum of the special values of the well-known
functions. We notice that { (— p,a) can be expressed as

{Cpa)=—517Bs @,

using the Bernoulli polynomial B, . ; defined by

i Bi(@)x* _ ze®
| T_ 1
P et-1

and that {'(- p,a) for a natural number a can be expressed as
a-1
{p.a)=L(-p)+ Q) klogk,
k=1
using the Riemann zeta function ¢ (s) = { (s, 1). We know that
3 1

Bi(a) =a—%, By(a)=a’-a+ %, Bs@)=a’-5a*+5a.

These enable us to compute as follows. For P(k) =k + 8., we have

1
{'p5,50)= D187 (L (=560 - (- P (-p.82)) - &7
=0

51_1 52_1 52—1
:24"(-— 1)+< Z klogk+ Z klogk>—5_ Z logk—6§,
k=2 k=2 k=8,

and, for P(k) = (k+68.)*, we have

3
SIRIOEDY 5”(;) (.80 - (DL (-p.62) -85

p=0

=20(-3)+682L(- 1)

6,-1 G2-1 8p=1
+( D kPlogk+ ] k310gk) -35_ > k’logk
k=2 k=2

k=61
8,-1 dy=1 Gp= 1
+35%< D klogk+ ] klogk>—5§ D logk
k=2 k=2 k=8
2 54
-56%

By Theorem 8, We can directly compute the analytic torsion of the line bundle L_,, with negative
—m over the complex projective space P”(C). We shall give the detail for low-dimensional P”(C) in
the next section.

5. THE EXAMPLES IN LOW DIMENSIONS.

For the case n=1,{;_ (s) is given by
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{1,)=8umi(9)= D) @k+m+3)(k+1D)(k+m+2)}~.
k=0

We set 8,=1, 83=m +2, and P(k) =2(k + &.). The analytic torsion A-Tor(L-,)={"ps,,s,(0) is given
by

8-1 9p-1 631
A—Tor(L_,,,)=z(2§'(— 1)+( D klogk+ ] klogk)—cS_ N 1ogk-6%,)
k=2 k=2 k=36

m+1 .
=40(-1)+2 )] klogk - (m+1)log ((m + 1)) - (m42-1) .
k=2

This result seems to be well-known.
For the case n =2,{_ (s) is given by

(1, )=2(=8amitom2),

20 m1= i (k+2)(k+m+2)<k+ m;4>{(k+ D(k+m+3)}7,

k=0

2 om2= Z(k+l)(k+m+4)<k+ m;5){(k+2)(k+m+3)}".
k=0
For 2{ g m 1, we set 8,= 1, 82=m + 3, and

Pk)=(k+8.-F)(k+8.+Z)(k+8.)

= k8.0~ (%) k8,

For 2 o, m 2, we set 81=2,82=m + 3, and

Pok) = (k+ 8.~ 2F3) (k+ 8.+ 2F3) k+5,)

=(k+6+>3—(%ﬁ)2(k+6+),

_m+5H _m+1
4= o 6_= 5 -

We have
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20 5, m1(0)=L"p,1,m+3(0)
= (2{'(— 3)+682L(-1)+ "iz k3logk—36_ "iz k*logk
i-e ke
+36§'r§2klogk—5§”§logk—%5f)
-(%) (2{( 1)+Z‘klogk 5. Zlogk 52)
=2§'(—3)+(3( )(2{( 1)+mz+2klogk>
) logk
-

Zklogk Zz k3logk

k=2

Similarly, we have
20 2,m2(0)= ', 2.m+3(0)
=z{'<—3)+<3(m; 1)2—<’”g3>2)<2('(— 1)+gklogk)
) (2] - (25 e

m+2
) klogk + Z k3logk
=9 =

.( 3 (259 )

A-Tor(L-,,)=—2L"2,m1(0) + 22 10 2(0)
=—6m+9){'(-1)

Finally, we have

m+2

+ ! ((m+1)(m+2)——§-(2m+3)+%k2)logk
k=2

5 15 19
+ipm’+ S m +3m+ﬁ

We notice that, since we have

3 log<(rf1'_?_'§'),)—Z((m+1)(m+2) (2m+3)+%k2>logk,

a+b+c=m

where a, b, and ¢ are non-negative integers, this result coincides with the result of [2], obtained by
the arithmetic Riemann-Roch formula.
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In higher dimensional cases, we will need some combinatorial relations for the coincidence,
which may attract distinctive interest.
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